{-# LANGUAGE DeriveDataTypeable #-} module Transient.EVars where import Transient.Base import Transient.Internals(runTransState,onNothing, EventF(..), killChildren) import qualified Data.Map as M import Data.Typeable import Control.Concurrent import Control.Applicative import Control.Concurrent.STM import Control.Monad.IO.Class import Control.Exception(SomeException) import Data.List(nub) import Control.Monad.State data EVar a= EVar (TChan (StreamData a)) deriving Typeable -- | creates an EVar. -- -- Evars are event vars. `writeEVar` trigger the execution of all the continuations associated to the `readEVar` of this variable -- (the code that is after them). -- -- It is like the publish-subscribe pattern but without inversion of control, since a readEVar can be inserted at any place in the -- Transient flow. -- -- EVars are created upstream and can be used to communicate two sub-threads of the monad. Following the Transient philosophy they -- do not block his own thread if used with alternative operators, unlike the IORefs and TVars. And unlike STM vars, that are composable, -- they wait for their respective events, while TVars execute the whole expression when any variable is modified. -- -- The execution continues after the writeEVar when all subscribers have been executed. -- -- Now the continuations are executed in parallel. -- -- see https://www.fpcomplete.com/user/agocorona/publish-subscribe-variables-transient-effects-v -- newEVar :: TransIO (EVar a) newEVar = Transient $ do id <- genId ref <-liftIO newBroadcastTChanIO return . Just $ EVar ref -- | delete al the subscriptions for an evar. cleanEVar :: EVar a -> TransIO () cleanEVar (EVar ref1)= liftIO $ atomically $ do writeTChan ref1 SDone -- | read the EVar. It only succeed when the EVar is being updated -- The continuation gets registered to be executed whenever the variable is updated. -- -- if readEVar is re-executed in any kind of loop, since each continuation is different, this will register -- again. The effect is that the continuation will be executed multiple times -- To avoid multiple registrations, use `cleanEVar` readEVar :: EVar a -> TransIO a readEVar (EVar ref1)= do tchan <- liftIO . atomically $ dupTChan ref1 r <- parallel $ atomically $ readTChan tchan case r of SDone -> empty SMore x -> return x SLast x -> return x SError e -> empty -- error $ "readEVar: "++ show e -- | update the EVar and execute all readEVar blocks with "last in-first out" priority -- writeEVar (EVar ref1) x= liftIO $ atomically $ do writeTChan ref1 $ SMore x -- | write the EVar and drop all the `readEVar` handlers. -- -- It is like a combination of `writeEVar` and `cleanEVar` lastWriteEVar (EVar ref1) x= liftIO $ atomically $ do writeTChan ref1 $ SLast x ---- Finalization -- -- --type FinishReason= Maybe SomeException -- -- -- --data Finish= Finish (EVar FinishReason) deriving Typeable -- ---- | initialize the event variable for finalization. ---- all the following computations in different threads will share it ---- it also isolate this event from other branches that may have his own finish variable --initFinish :: TransIO Finish --initFinish= do -- fin <- newEVar -- let f = Finish fin -- setData f -- return f -- ---- | set a computation to be called when the finish event happens --onFinish :: (FinishReason ->TransIO ()) -> TransIO () --onFinish close= do -- Finish finish <- getSData <|> initFinish -- e <- freeThreads $ readEVar finish -- close e -- !!> "CLOSE" -- stop -- <|> -- return () -- -- -- ---- | trigger the event, so this closes all the resources --finish :: FinishReason -> TransIO () --finish e= do -- liftIO $ putStr "finish: " >> print e -- Finish finish <- getSData <|> initFinish -- lastWriteEVar finish e -- ---- | deregister all the finalization actions. ---- A initFinish is needed to register actions again --unFinish= do -- Finish fin <- getSData -- cleanEVar fin -- !!> "DELEVAR" -- <|> return () -- !!> "NOT DELEVAR" -- -- ---- | kill all the processes generated by the parameter when finish event occurs --killOnFinish comp= do -- -- chs <- liftIO $ newTVarIO [] -- onFinish $ const $ liftIO $ killChildren chs -- !> "killOnFinish event" -- r <- comp -- modify $ \ s -> s{children= chs} -- return r -- ---- | trigger finish when the stream data return SDone --checkFinalize v= -- case v of -- SDone -> finish Nothing >> stop -- SLast x -> return x -- SError e -> liftIO ( print e) >> finish Nothing >> stop -- SMore x -> return x