#include #include #include #include #include #include "tree_sitter/api.h" #include "./alloc.h" #include "./array.h" #include "./atomic.h" #include "./clock.h" #include "./error_costs.h" #include "./get_changed_ranges.h" #include "./language.h" #include "./length.h" #include "./lexer.h" #include "./reduce_action.h" #include "./reusable_node.h" #include "./stack.h" #include "./subtree.h" #include "./tree.h" #define LOG(...) \ if (self->lexer.logger.log || self->dot_graph_file) { \ snprintf(self->lexer.debug_buffer, TREE_SITTER_SERIALIZATION_BUFFER_SIZE, __VA_ARGS__); \ ts_parser__log(self); \ } #define LOG_STACK() \ if (self->dot_graph_file) { \ ts_stack_print_dot_graph(self->stack, self->language, self->dot_graph_file); \ fputs("\n\n", self->dot_graph_file); \ } #define LOG_TREE(tree) \ if (self->dot_graph_file) { \ ts_subtree_print_dot_graph(tree, self->language, self->dot_graph_file); \ fputs("\n", self->dot_graph_file); \ } #define SYM_NAME(symbol) ts_language_symbol_name(self->language, symbol) #define TREE_NAME(tree) SYM_NAME(ts_subtree_symbol(tree)) static const unsigned MAX_VERSION_COUNT = 6; static const unsigned MAX_VERSION_COUNT_OVERFLOW = 4; static const unsigned MAX_SUMMARY_DEPTH = 16; static const unsigned MAX_COST_DIFFERENCE = 16 * ERROR_COST_PER_SKIPPED_TREE; static const unsigned OP_COUNT_PER_TIMEOUT_CHECK = 100; typedef struct { Subtree token; Subtree last_external_token; uint32_t byte_index; } TokenCache; struct TSParser { Lexer lexer; Stack *stack; SubtreePool tree_pool; const TSLanguage *language; ReduceActionSet reduce_actions; Subtree finished_tree; SubtreeHeapData scratch_tree_data; MutableSubtree scratch_tree; TokenCache token_cache; ReusableNode reusable_node; void *external_scanner_payload; FILE *dot_graph_file; TSClock end_clock; TSDuration timeout_duration; unsigned accept_count; unsigned operation_count; const volatile size_t *cancellation_flag; bool halt_on_error; Subtree old_tree; TSRangeArray included_range_differences; unsigned included_range_difference_index; }; typedef struct { unsigned cost; unsigned node_count; int dynamic_precedence; bool is_in_error; } ErrorStatus; typedef enum { ErrorComparisonTakeLeft, ErrorComparisonPreferLeft, ErrorComparisonNone, ErrorComparisonPreferRight, ErrorComparisonTakeRight, } ErrorComparison; typedef struct { const char *string; uint32_t length; } TSStringInput; // StringInput static const char *ts_string_input_read(void *_self, uint32_t byte, TSPoint _, uint32_t *length) { TSStringInput *self = (TSStringInput *)_self; if (byte >= self->length) { *length = 0; return ""; } else { *length = self->length - byte; return self->string + byte; } } // Parser - Private static void ts_parser__log(TSParser *self) { if (self->lexer.logger.log) { self->lexer.logger.log( self->lexer.logger.payload, TSLogTypeParse, self->lexer.debug_buffer ); } if (self->dot_graph_file) { fprintf(self->dot_graph_file, "graph {\nlabel=\""); for (char *c = &self->lexer.debug_buffer[0]; *c != 0; c++) { if (*c == '"') fputc('\\', self->dot_graph_file); fputc(*c, self->dot_graph_file); } fprintf(self->dot_graph_file, "\"\n}\n\n"); } } static bool ts_parser__breakdown_top_of_stack(TSParser *self, StackVersion version) { bool did_break_down = false; bool pending = false; do { StackSliceArray pop = ts_stack_pop_pending(self->stack, version); if (!pop.size) break; did_break_down = true; pending = false; for (uint32_t i = 0; i < pop.size; i++) { StackSlice slice = pop.contents[i]; TSStateId state = ts_stack_state(self->stack, slice.version); Subtree parent = *array_front(&slice.subtrees); for (uint32_t j = 0, n = ts_subtree_child_count(parent); j < n; j++) { Subtree child = parent.ptr->children[j]; pending = ts_subtree_child_count(child) > 0; if (ts_subtree_is_error(child)) { state = ERROR_STATE; } else if (!ts_subtree_extra(child)) { state = ts_language_next_state(self->language, state, ts_subtree_symbol(child)); } ts_subtree_retain(child); ts_stack_push(self->stack, slice.version, child, pending, state); } for (uint32_t j = 1; j < slice.subtrees.size; j++) { Subtree tree = slice.subtrees.contents[j]; ts_stack_push(self->stack, slice.version, tree, false, state); } ts_subtree_release(&self->tree_pool, parent); array_delete(&slice.subtrees); LOG("breakdown_top_of_stack tree:%s", TREE_NAME(parent)); LOG_STACK(); } } while (pending); return did_break_down; } static void ts_parser__breakdown_lookahead(TSParser *self, Subtree *lookahead, TSStateId state, ReusableNode *reusable_node) { bool did_descend = false; Subtree tree = reusable_node_tree(reusable_node); while (ts_subtree_child_count(tree) > 0 && ts_subtree_parse_state(tree) != state) { LOG("state_mismatch sym:%s", TREE_NAME(tree)); reusable_node_descend(reusable_node); tree = reusable_node_tree(reusable_node); did_descend = true; } if (did_descend) { ts_subtree_release(&self->tree_pool, *lookahead); *lookahead = tree; ts_subtree_retain(*lookahead); } } static ErrorComparison ts_parser__compare_versions(TSParser *self, ErrorStatus a, ErrorStatus b) { if (!a.is_in_error && b.is_in_error) { if (a.cost < b.cost) { return ErrorComparisonTakeLeft; } else { return ErrorComparisonPreferLeft; } } if (a.is_in_error && !b.is_in_error) { if (b.cost < a.cost) { return ErrorComparisonTakeRight; } else { return ErrorComparisonPreferRight; } } if (a.cost < b.cost) { if ((b.cost - a.cost) * (1 + a.node_count) > MAX_COST_DIFFERENCE) { return ErrorComparisonTakeLeft; } else { return ErrorComparisonPreferLeft; } } if (b.cost < a.cost) { if ((a.cost - b.cost) * (1 + b.node_count) > MAX_COST_DIFFERENCE) { return ErrorComparisonTakeRight; } else { return ErrorComparisonPreferRight; } } if (a.dynamic_precedence > b.dynamic_precedence) return ErrorComparisonPreferLeft; if (b.dynamic_precedence > a.dynamic_precedence) return ErrorComparisonPreferRight; return ErrorComparisonNone; } static ErrorStatus ts_parser__version_status(TSParser *self, StackVersion version) { unsigned cost = ts_stack_error_cost(self->stack, version); bool is_paused = ts_stack_is_paused(self->stack, version); if (is_paused) cost += ERROR_COST_PER_SKIPPED_TREE; return (ErrorStatus) { .cost = cost, .node_count = ts_stack_node_count_since_error(self->stack, version), .dynamic_precedence = ts_stack_dynamic_precedence(self->stack, version), .is_in_error = is_paused || ts_stack_state(self->stack, version) == ERROR_STATE }; } static bool ts_parser__better_version_exists(TSParser *self, StackVersion version, bool is_in_error, unsigned cost) { if (self->finished_tree.ptr && ts_subtree_error_cost(self->finished_tree) <= cost) { return true; } Length position = ts_stack_position(self->stack, version); ErrorStatus status = { .cost = cost, .is_in_error = is_in_error, .dynamic_precedence = ts_stack_dynamic_precedence(self->stack, version), .node_count = ts_stack_node_count_since_error(self->stack, version), }; for (StackVersion i = 0, n = ts_stack_version_count(self->stack); i < n; i++) { if (i == version || !ts_stack_is_active(self->stack, i) || ts_stack_position(self->stack, i).bytes < position.bytes) continue; ErrorStatus status_i = ts_parser__version_status(self, i); switch (ts_parser__compare_versions(self, status, status_i)) { case ErrorComparisonTakeRight: return true; case ErrorComparisonPreferRight: if (ts_stack_can_merge(self->stack, i, version)) return true; default: break; } } return false; } static void ts_parser__restore_external_scanner(TSParser *self, Subtree external_token) { if (external_token.ptr) { self->language->external_scanner.deserialize( self->external_scanner_payload, ts_external_scanner_state_data(&external_token.ptr->external_scanner_state), external_token.ptr->external_scanner_state.length ); } else { self->language->external_scanner.deserialize(self->external_scanner_payload, NULL, 0); } } static bool ts_parser__can_reuse_first_leaf(TSParser *self, TSStateId state, Subtree tree, TableEntry *table_entry) { TSLexMode current_lex_mode = self->language->lex_modes[state]; TSSymbol leaf_symbol = ts_subtree_leaf_symbol(tree); TSStateId leaf_state = ts_subtree_leaf_parse_state(tree); TSLexMode leaf_lex_mode = self->language->lex_modes[leaf_state]; // If the token was created in a state with the same set of lookaheads, it is reusable. if (memcmp(&leaf_lex_mode, ¤t_lex_mode, sizeof(TSLexMode)) == 0 && (leaf_symbol != self->language->keyword_capture_token || (!ts_subtree_is_keyword(tree) && ts_subtree_parse_state(tree) == state))) return true; // Empty tokens are not reusable in states with different lookaheads. if (ts_subtree_size(tree).bytes == 0 && leaf_symbol != ts_builtin_sym_end) return false; // If the current state allows external tokens or other tokens that conflict with this // token, this token is not reusable. return current_lex_mode.external_lex_state == 0 && table_entry->is_reusable; } static Subtree ts_parser__lex(TSParser *self, StackVersion version, TSStateId parse_state) { Length start_position = ts_stack_position(self->stack, version); Subtree external_token = ts_stack_last_external_token(self->stack, version); TSLexMode lex_mode = self->language->lex_modes[parse_state]; const bool *valid_external_tokens = ts_language_enabled_external_tokens( self->language, lex_mode.external_lex_state ); bool found_external_token = false; bool error_mode = parse_state == ERROR_STATE; bool skipped_error = false; int32_t first_error_character = 0; Length error_start_position = length_zero(); Length error_end_position = length_zero(); uint32_t lookahead_end_byte = 0; ts_lexer_reset(&self->lexer, start_position); for (;;) { Length current_position = self->lexer.current_position; if (valid_external_tokens) { LOG( "lex_external state:%d, row:%u, column:%u", lex_mode.external_lex_state, current_position.extent.row + 1, current_position.extent.column ); ts_lexer_start(&self->lexer); ts_parser__restore_external_scanner(self, external_token); bool found_token = self->language->external_scanner.scan( self->external_scanner_payload, &self->lexer.data, valid_external_tokens ); ts_lexer_finish(&self->lexer, &lookahead_end_byte); // Zero-length external tokens are generally allowed, but they're not // allowed right after a syntax error. This is for two reasons: // 1. After a syntax error, the lexer is looking for any possible token, // as opposed to the specific set of tokens that are valid in some // parse state. In this situation, it's very easy for an external // scanner to produce unwanted zero-length tokens. // 2. The parser sometimes inserts *missing* tokens to recover from // errors. These tokens are also zero-length. If we allow more // zero-length tokens to be created after missing tokens, it // can lead to infinite loops. Forbidding zero-length tokens // right at the point of error recovery is a conservative strategy // for preventing this kind of infinite loop. if (found_token && ( self->lexer.token_end_position.bytes > current_position.bytes || (!error_mode && ts_stack_has_advanced_since_error(self->stack, version)) )) { found_external_token = true; break; } ts_lexer_reset(&self->lexer, current_position); } LOG( "lex_internal state:%d, row:%u, column:%u", lex_mode.lex_state, current_position.extent.row + 1, current_position.extent.column ); ts_lexer_start(&self->lexer); bool found_token = self->language->lex_fn(&self->lexer.data, lex_mode.lex_state); ts_lexer_finish(&self->lexer, &lookahead_end_byte); if (found_token) break; if (!error_mode) { error_mode = true; lex_mode = self->language->lex_modes[ERROR_STATE]; valid_external_tokens = ts_language_enabled_external_tokens( self->language, lex_mode.external_lex_state ); ts_lexer_reset(&self->lexer, start_position); continue; } if (!skipped_error) { LOG("skip_unrecognized_character"); skipped_error = true; error_start_position = self->lexer.token_start_position; error_end_position = self->lexer.token_start_position; first_error_character = self->lexer.data.lookahead; } if (self->lexer.current_position.bytes == error_end_position.bytes) { if (self->lexer.data.lookahead == 0) { self->lexer.data.result_symbol = ts_builtin_sym_error; break; } self->lexer.data.advance(&self->lexer.data, false); } error_end_position = self->lexer.current_position; } Subtree result; if (skipped_error) { Length padding = length_sub(error_start_position, start_position); Length size = length_sub(error_end_position, error_start_position); uint32_t lookahead_bytes = lookahead_end_byte - error_end_position.bytes; result = ts_subtree_new_error( &self->tree_pool, first_error_character, padding, size, lookahead_bytes, parse_state, self->language ); LOG( "lexed_lookahead sym:%s, size:%u, character:'%c'", SYM_NAME(ts_subtree_symbol(result)), ts_subtree_total_size(result).bytes, first_error_character ); } else { if (self->lexer.token_end_position.bytes < self->lexer.token_start_position.bytes) { self->lexer.token_start_position = self->lexer.token_end_position; } bool is_keyword = false; TSSymbol symbol = self->lexer.data.result_symbol; Length padding = length_sub(self->lexer.token_start_position, start_position); Length size = length_sub(self->lexer.token_end_position, self->lexer.token_start_position); uint32_t lookahead_bytes = lookahead_end_byte - self->lexer.token_end_position.bytes; if (found_external_token) { symbol = self->language->external_scanner.symbol_map[symbol]; } else if (symbol == self->language->keyword_capture_token && symbol != 0) { uint32_t end_byte = self->lexer.token_end_position.bytes; ts_lexer_reset(&self->lexer, self->lexer.token_start_position); ts_lexer_start(&self->lexer); if ( self->language->keyword_lex_fn(&self->lexer.data, 0) && self->lexer.token_end_position.bytes == end_byte && ts_language_has_actions(self->language, parse_state, self->lexer.data.result_symbol) ) { is_keyword = true; symbol = self->lexer.data.result_symbol; } } result = ts_subtree_new_leaf( &self->tree_pool, symbol, padding, size, lookahead_bytes, parse_state, found_external_token, is_keyword, self->language ); if (found_external_token) { unsigned length = self->language->external_scanner.serialize( self->external_scanner_payload, self->lexer.debug_buffer ); ts_external_scanner_state_init( &((SubtreeHeapData *)result.ptr)->external_scanner_state, self->lexer.debug_buffer, length ); } LOG( "lexed_lookahead sym:%s, size:%u", SYM_NAME(ts_subtree_symbol(result)), ts_subtree_total_size(result).bytes ); } return result; } static Subtree ts_parser__get_cached_token(TSParser *self, TSStateId state, size_t position, Subtree last_external_token, TableEntry *table_entry) { TokenCache *cache = &self->token_cache; if ( cache->token.ptr && cache->byte_index == position && ts_subtree_external_scanner_state_eq(cache->last_external_token, last_external_token) ) { ts_language_table_entry(self->language, state, ts_subtree_symbol(cache->token), table_entry); if (ts_parser__can_reuse_first_leaf(self, state, cache->token, table_entry)) { ts_subtree_retain(cache->token); return cache->token; } } return NULL_SUBTREE; } static void ts_parser__set_cached_token(TSParser *self, size_t byte_index, Subtree last_external_token, Subtree token) { TokenCache *cache = &self->token_cache; if (token.ptr) ts_subtree_retain(token); if (last_external_token.ptr) ts_subtree_retain(last_external_token); if (cache->token.ptr) ts_subtree_release(&self->tree_pool, cache->token); if (cache->last_external_token.ptr) ts_subtree_release(&self->tree_pool, cache->last_external_token); cache->token = token; cache->byte_index = byte_index; cache->last_external_token = last_external_token; } static bool ts_parser__has_included_range_difference(const TSParser *self, uint32_t start_position, uint32_t end_position) { return ts_range_array_intersects( &self->included_range_differences, self->included_range_difference_index, start_position, end_position ); } static Subtree ts_parser__reuse_node(TSParser *self, StackVersion version, TSStateId *state, uint32_t position, Subtree last_external_token, TableEntry *table_entry) { Subtree result; while ((result = reusable_node_tree(&self->reusable_node)).ptr) { uint32_t byte_offset = reusable_node_byte_offset(&self->reusable_node); uint32_t end_byte_offset = byte_offset + ts_subtree_total_bytes(result); if (byte_offset > position) { LOG("before_reusable_node symbol:%s", TREE_NAME(result)); break; } if (byte_offset < position) { LOG("past_reusable_node symbol:%s", TREE_NAME(result)); if (end_byte_offset <= position || !reusable_node_descend(&self->reusable_node)) { reusable_node_advance(&self->reusable_node); } continue; } if (!ts_subtree_external_scanner_state_eq(self->reusable_node.last_external_token, last_external_token)) { LOG("reusable_node_has_different_external_scanner_state symbol:%s", TREE_NAME(result)); reusable_node_advance(&self->reusable_node); continue; } const char *reason = NULL; if (ts_subtree_has_changes(result)) { reason = "has_changes"; } else if (ts_subtree_is_error(result)) { reason = "is_error"; } else if (ts_subtree_missing(result)) { reason = "is_missing"; } else if (ts_subtree_is_fragile(result)) { reason = "is_fragile"; } else if (ts_parser__has_included_range_difference(self, byte_offset, end_byte_offset)) { reason = "contains_different_included_range"; } if (reason) { LOG("cant_reuse_node_%s tree:%s", reason, TREE_NAME(result)); if (!reusable_node_descend(&self->reusable_node)) { reusable_node_advance(&self->reusable_node); ts_parser__breakdown_top_of_stack(self, version); *state = ts_stack_state(self->stack, version); } continue; } TSSymbol leaf_symbol = ts_subtree_leaf_symbol(result); ts_language_table_entry(self->language, *state, leaf_symbol, table_entry); if (!ts_parser__can_reuse_first_leaf(self, *state, result, table_entry)) { LOG( "cant_reuse_node symbol:%s, first_leaf_symbol:%s", TREE_NAME(result), SYM_NAME(leaf_symbol) ); reusable_node_advance_past_leaf(&self->reusable_node); break; } LOG("reuse_node symbol:%s", TREE_NAME(result)); ts_subtree_retain(result); return result; } return NULL_SUBTREE; } static bool ts_parser__select_tree(TSParser *self, Subtree left, Subtree right) { if (!left.ptr) return true; if (!right.ptr) return false; if (ts_subtree_error_cost(right) < ts_subtree_error_cost(left)) { LOG("select_smaller_error symbol:%s, over_symbol:%s", TREE_NAME(right), TREE_NAME(left)); return true; } if (ts_subtree_error_cost(left) < ts_subtree_error_cost(right)) { LOG("select_smaller_error symbol:%s, over_symbol:%s", TREE_NAME(left), TREE_NAME(right)); return false; } if (ts_subtree_dynamic_precedence(right) > ts_subtree_dynamic_precedence(left)) { LOG("select_higher_precedence symbol:%s, prec:%u, over_symbol:%s, other_prec:%u", TREE_NAME(right), ts_subtree_dynamic_precedence(right), TREE_NAME(left), ts_subtree_dynamic_precedence(left)); return true; } if (ts_subtree_dynamic_precedence(left) > ts_subtree_dynamic_precedence(right)) { LOG("select_higher_precedence symbol:%s, prec:%u, over_symbol:%s, other_prec:%u", TREE_NAME(left), ts_subtree_dynamic_precedence(left), TREE_NAME(right), ts_subtree_dynamic_precedence(right)); return false; } if (ts_subtree_error_cost(left) > 0) return true; int comparison = ts_subtree_compare(left, right); switch (comparison) { case -1: LOG("select_earlier symbol:%s, over_symbol:%s", TREE_NAME(left), TREE_NAME(right)); return false; break; case 1: LOG("select_earlier symbol:%s, over_symbol:%s", TREE_NAME(right), TREE_NAME(left)); return true; default: LOG("select_existing symbol:%s, over_symbol:%s", TREE_NAME(left), TREE_NAME(right)); return false; } } static void ts_parser__shift(TSParser *self, StackVersion version, TSStateId state, Subtree lookahead, bool extra) { Subtree subtree_to_push; if (extra != ts_subtree_extra(lookahead)) { MutableSubtree result = ts_subtree_make_mut(&self->tree_pool, lookahead); ts_subtree_set_extra(&result); subtree_to_push = ts_subtree_from_mut(result); } else { subtree_to_push = lookahead; } bool is_pending = ts_subtree_child_count(subtree_to_push) > 0; ts_stack_push(self->stack, version, subtree_to_push, is_pending, state); if (ts_subtree_has_external_tokens(subtree_to_push)) { ts_stack_set_last_external_token( self->stack, version, ts_subtree_last_external_token(subtree_to_push) ); } } static bool ts_parser__replace_children(TSParser *self, MutableSubtree *tree, SubtreeArray *children) { *self->scratch_tree.ptr = *tree->ptr; self->scratch_tree.ptr->child_count = 0; ts_subtree_set_children(self->scratch_tree, children->contents, children->size, self->language); if (ts_parser__select_tree(self, ts_subtree_from_mut(*tree), ts_subtree_from_mut(self->scratch_tree))) { *tree->ptr = *self->scratch_tree.ptr; return true; } else { return false; } } static StackVersion ts_parser__reduce(TSParser *self, StackVersion version, TSSymbol symbol, uint32_t count, int dynamic_precedence, uint16_t production_id, bool fragile) { uint32_t initial_version_count = ts_stack_version_count(self->stack); uint32_t removed_version_count = 0; StackSliceArray pop = ts_stack_pop_count(self->stack, version, count); for (uint32_t i = 0; i < pop.size; i++) { StackSlice slice = pop.contents[i]; StackVersion slice_version = slice.version - removed_version_count; // Error recovery can sometimes cause lots of stack versions to merge, // such that a single pop operation can produce a lots of slices. // Avoid creating too many stack versions in that situation. if (i > 0 && slice_version > MAX_VERSION_COUNT + MAX_VERSION_COUNT_OVERFLOW) { ts_stack_remove_version(self->stack, slice_version); ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); removed_version_count++; while (i + 1 < pop.size) { StackSlice next_slice = pop.contents[i + 1]; if (next_slice.version != slice.version) break; ts_subtree_array_delete(&self->tree_pool, &next_slice.subtrees); i++; } continue; } // Extra tokens on top of the stack should not be included in this new parent // node. They will be re-pushed onto the stack after the parent node is // created and pushed. SubtreeArray children = slice.subtrees; while (children.size > 0 && ts_subtree_extra(children.contents[children.size - 1])) { children.size--; } MutableSubtree parent = ts_subtree_new_node(&self->tree_pool, symbol, &children, production_id, self->language ); // This pop operation may have caused multiple stack versions to collapse // into one, because they all diverged from a common state. In that case, // choose one of the arrays of trees to be the parent node's children, and // delete the rest of the tree arrays. while (i + 1 < pop.size) { StackSlice next_slice = pop.contents[i + 1]; if (next_slice.version != slice.version) break; i++; SubtreeArray children = next_slice.subtrees; while (children.size > 0 && ts_subtree_extra(children.contents[children.size - 1])) { children.size--; } if (ts_parser__replace_children(self, &parent, &children)) { ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); slice = next_slice; } else { ts_subtree_array_delete(&self->tree_pool, &next_slice.subtrees); } } parent.ptr->dynamic_precedence += dynamic_precedence; parent.ptr->production_id = production_id; TSStateId state = ts_stack_state(self->stack, slice_version); TSStateId next_state = ts_language_next_state(self->language, state, symbol); if (fragile || pop.size > 1 || initial_version_count > 1) { parent.ptr->fragile_left = true; parent.ptr->fragile_right = true; parent.ptr->parse_state = TS_TREE_STATE_NONE; } else { parent.ptr->parse_state = state; } // Push the parent node onto the stack, along with any extra tokens that // were previously on top of the stack. ts_stack_push(self->stack, slice_version, ts_subtree_from_mut(parent), false, next_state); for (uint32_t j = parent.ptr->child_count; j < slice.subtrees.size; j++) { ts_stack_push(self->stack, slice_version, slice.subtrees.contents[j], false, next_state); } for (StackVersion j = 0; j < slice_version; j++) { if (j == version) continue; if (ts_stack_merge(self->stack, j, slice_version)) { removed_version_count++; break; } } } // Return the first new stack version that was created. return ts_stack_version_count(self->stack) > initial_version_count ? initial_version_count : STACK_VERSION_NONE; } static void ts_parser__accept(TSParser *self, StackVersion version, Subtree lookahead) { assert(ts_subtree_is_eof(lookahead)); ts_stack_push(self->stack, version, lookahead, false, 1); StackSliceArray pop = ts_stack_pop_all(self->stack, version); for (uint32_t i = 0; i < pop.size; i++) { SubtreeArray trees = pop.contents[i].subtrees; Subtree root = NULL_SUBTREE; for (uint32_t j = trees.size - 1; j + 1 > 0; j--) { Subtree child = trees.contents[j]; if (!ts_subtree_extra(child)) { assert(!child.data.is_inline); uint32_t child_count = ts_subtree_child_count(child); for (uint32_t k = 0; k < child_count; k++) { ts_subtree_retain(child.ptr->children[k]); } array_splice(&trees, j, 1, child_count, child.ptr->children); root = ts_subtree_from_mut(ts_subtree_new_node( &self->tree_pool, ts_subtree_symbol(child), &trees, child.ptr->production_id, self->language )); ts_subtree_release(&self->tree_pool, child); break; } } assert(root.ptr); self->accept_count++; if (self->finished_tree.ptr) { if (ts_parser__select_tree(self, self->finished_tree, root)) { ts_subtree_release(&self->tree_pool, self->finished_tree); self->finished_tree = root; } else { ts_subtree_release(&self->tree_pool, root); } } else { self->finished_tree = root; } } ts_stack_remove_version(self->stack, pop.contents[0].version); ts_stack_halt(self->stack, version); } static bool ts_parser__do_all_potential_reductions(TSParser *self, StackVersion starting_version, TSSymbol lookahead_symbol) { uint32_t initial_version_count = ts_stack_version_count(self->stack); bool can_shift_lookahead_symbol = false; StackVersion version = starting_version; for (unsigned i = 0; true; i++) { uint32_t version_count = ts_stack_version_count(self->stack); if (version >= version_count) break; bool merged = false; for (StackVersion i = initial_version_count; i < version; i++) { if (ts_stack_merge(self->stack, i, version)) { merged = true; break; } } if (merged) continue; TSStateId state = ts_stack_state(self->stack, version); bool has_shift_action = false; array_clear(&self->reduce_actions); TSSymbol first_symbol, end_symbol; if (lookahead_symbol != 0) { first_symbol = lookahead_symbol; end_symbol = lookahead_symbol + 1; } else { first_symbol = 1; end_symbol = self->language->token_count; } for (TSSymbol symbol = first_symbol; symbol < end_symbol; symbol++) { TableEntry entry; ts_language_table_entry(self->language, state, symbol, &entry); for (uint32_t i = 0; i < entry.action_count; i++) { TSParseAction action = entry.actions[i]; switch (action.type) { case TSParseActionTypeShift: case TSParseActionTypeRecover: if (!action.params.extra && !action.params.repetition) has_shift_action = true; break; case TSParseActionTypeReduce: if (action.params.child_count > 0) ts_reduce_action_set_add(&self->reduce_actions, (ReduceAction){ .symbol = action.params.symbol, .count = action.params.child_count, .dynamic_precedence = action.params.dynamic_precedence, .production_id = action.params.production_id, }); default: break; } } } StackVersion reduction_version = STACK_VERSION_NONE; for (uint32_t i = 0; i < self->reduce_actions.size; i++) { ReduceAction action = self->reduce_actions.contents[i]; reduction_version = ts_parser__reduce( self, version, action.symbol, action.count, action.dynamic_precedence, action.production_id, true ); } if (has_shift_action) { can_shift_lookahead_symbol = true; } else if (reduction_version != STACK_VERSION_NONE && i < MAX_VERSION_COUNT) { ts_stack_renumber_version(self->stack, reduction_version, version); continue; } else if (lookahead_symbol != 0) { ts_stack_remove_version(self->stack, version); } if (version == starting_version) { version = version_count; } else { version++; } } return can_shift_lookahead_symbol; } static void ts_parser__handle_error(TSParser *self, StackVersion version, TSSymbol lookahead_symbol) { uint32_t previous_version_count = ts_stack_version_count(self->stack); // Perform any reductions that can happen in this state, regardless of the lookahead. After // skipping one or more invalid tokens, the parser might find a token that would have allowed // a reduction to take place. ts_parser__do_all_potential_reductions(self, version, 0); uint32_t version_count = ts_stack_version_count(self->stack); Length position = ts_stack_position(self->stack, version); // Push a discontinuity onto the stack. Merge all of the stack versions that // were created in the previous step. bool did_insert_missing_token = false; for (StackVersion v = version; v < version_count;) { if (!did_insert_missing_token) { TSStateId state = ts_stack_state(self->stack, v); for (TSSymbol missing_symbol = 1; missing_symbol < self->language->token_count; missing_symbol++) { TSStateId state_after_missing_symbol = ts_language_next_state( self->language, state, missing_symbol ); if (state_after_missing_symbol == 0) continue; if (ts_language_has_reduce_action( self->language, state_after_missing_symbol, lookahead_symbol )) { // In case the parser is currently outside of any included range, the lexer will // snap to the beginning of the next included range. The missing token's padding // must be assigned to position it within the next included range. ts_lexer_reset(&self->lexer, position); ts_lexer_mark_end(&self->lexer); Length padding = length_sub(self->lexer.token_end_position, position); StackVersion version_with_missing_tree = ts_stack_copy_version(self->stack, v); Subtree missing_tree = ts_subtree_new_missing_leaf( &self->tree_pool, missing_symbol, padding, self->language ); ts_stack_push( self->stack, version_with_missing_tree, missing_tree, false, state_after_missing_symbol ); if (ts_parser__do_all_potential_reductions( self, version_with_missing_tree, lookahead_symbol )) { LOG( "recover_with_missing symbol:%s, state:%u", SYM_NAME(missing_symbol), ts_stack_state(self->stack, version_with_missing_tree) ); did_insert_missing_token = true; break; } } } } ts_stack_push(self->stack, v, NULL_SUBTREE, false, ERROR_STATE); v = (v == version) ? previous_version_count : v + 1; } for (unsigned i = previous_version_count; i < version_count; i++) { assert(ts_stack_merge(self->stack, version, previous_version_count)); } ts_stack_record_summary(self->stack, version, MAX_SUMMARY_DEPTH); LOG_STACK(); } static void ts_parser__halt_parse(TSParser *self) { LOG("halting_parse"); LOG_STACK(); ts_lexer_advance_to_end(&self->lexer); Length remaining_length = length_sub( self->lexer.current_position, ts_stack_position(self->stack, 0) ); Subtree filler_node = ts_subtree_new_error( &self->tree_pool, 0, length_zero(), remaining_length, remaining_length.bytes, 0, self->language ); ts_subtree_to_mut_unsafe(filler_node).ptr->visible = false; ts_stack_push(self->stack, 0, filler_node, false, 0); SubtreeArray children = array_new(); Subtree root_error = ts_subtree_new_error_node(&self->tree_pool, &children, false, self->language); ts_stack_push(self->stack, 0, root_error, false, 0); Subtree eof = ts_subtree_new_leaf( &self->tree_pool, ts_builtin_sym_end, length_zero(), length_zero(), 0, 0, false, false, self->language ); ts_parser__accept(self, 0, eof); } static bool ts_parser__recover_to_state(TSParser *self, StackVersion version, unsigned depth, TSStateId goal_state) { StackSliceArray pop = ts_stack_pop_count(self->stack, version, depth); StackVersion previous_version = STACK_VERSION_NONE; for (unsigned i = 0; i < pop.size; i++) { StackSlice slice = pop.contents[i]; if (slice.version == previous_version) { ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); array_erase(&pop, i--); continue; } if (ts_stack_state(self->stack, slice.version) != goal_state) { ts_stack_halt(self->stack, slice.version); ts_subtree_array_delete(&self->tree_pool, &slice.subtrees); array_erase(&pop, i--); continue; } SubtreeArray error_trees = ts_stack_pop_error(self->stack, slice.version); if (error_trees.size > 0) { assert(error_trees.size == 1); Subtree error_tree = error_trees.contents[0]; uint32_t error_child_count = ts_subtree_child_count(error_tree); if (error_child_count > 0) { array_splice(&slice.subtrees, 0, 0, error_child_count, error_tree.ptr->children); for (unsigned j = 0; j < error_child_count; j++) { ts_subtree_retain(slice.subtrees.contents[j]); } } ts_subtree_array_delete(&self->tree_pool, &error_trees); } SubtreeArray trailing_extras = ts_subtree_array_remove_trailing_extras(&slice.subtrees); if (slice.subtrees.size > 0) { Subtree error = ts_subtree_new_error_node(&self->tree_pool, &slice.subtrees, true, self->language); ts_stack_push(self->stack, slice.version, error, false, goal_state); } else { array_delete(&slice.subtrees); } for (unsigned j = 0; j < trailing_extras.size; j++) { Subtree tree = trailing_extras.contents[j]; ts_stack_push(self->stack, slice.version, tree, false, goal_state); } previous_version = slice.version; array_delete(&trailing_extras); } return previous_version != STACK_VERSION_NONE; } static void ts_parser__recover(TSParser *self, StackVersion version, Subtree lookahead) { bool did_recover = false; unsigned previous_version_count = ts_stack_version_count(self->stack); Length position = ts_stack_position(self->stack, version); StackSummary *summary = ts_stack_get_summary(self->stack, version); unsigned node_count_since_error = ts_stack_node_count_since_error(self->stack, version); unsigned current_error_cost = ts_stack_error_cost(self->stack, version); // When the parser is in the error state, there are two strategies for recovering with a // given lookahead token: // 1. Find a previous state on the stack in which that lookahead token would be valid. Then, // create a new stack version that is in that state again. This entails popping all of the // subtrees that have been pushed onto the stack since that previous state, and wrapping // them in an ERROR node. // 2. Wrap the lookahead token in an ERROR node, push that ERROR node onto the stack, and // move on to the next lookahead token, remaining in the error state. // // First, try the strategy 1. Upon entering the error state, the parser recorded a summary // of the previous parse states and their depths. Look at each state in the summary, to see // if the current lookahead token would be valid in that state. if (summary && !ts_subtree_is_error(lookahead)) { for (unsigned i = 0; i < summary->size; i++) { StackSummaryEntry entry = summary->contents[i]; if (entry.state == ERROR_STATE) continue; if (entry.position.bytes == position.bytes) continue; unsigned depth = entry.depth; if (node_count_since_error > 0) depth++; // Do not recover in ways that create redundant stack versions. bool would_merge = false; for (unsigned j = 0; j < previous_version_count; j++) { if ( ts_stack_state(self->stack, j) == entry.state && ts_stack_position(self->stack, j).bytes == position.bytes ) { would_merge = true; break; } } if (would_merge) continue; // Do not recover if the result would clearly be worse than some existing stack version. unsigned new_cost = current_error_cost + entry.depth * ERROR_COST_PER_SKIPPED_TREE + (position.bytes - entry.position.bytes) * ERROR_COST_PER_SKIPPED_CHAR + (position.extent.row - entry.position.extent.row) * ERROR_COST_PER_SKIPPED_LINE; if (ts_parser__better_version_exists(self, version, false, new_cost)) break; // If the current lookahead token is valid in some previous state, recover to that state. // Then stop looking for further recoveries. if (ts_language_has_actions(self->language, entry.state, ts_subtree_symbol(lookahead))) { if (ts_parser__recover_to_state(self, version, depth, entry.state)) { did_recover = true; LOG("recover_to_previous state:%u, depth:%u", entry.state, depth); LOG_STACK(); break; } } } } // In the process of attemping to recover, some stack versions may have been created // and subsequently halted. Remove those versions. for (unsigned i = previous_version_count; i < ts_stack_version_count(self->stack); i++) { if (!ts_stack_is_active(self->stack, i)) { ts_stack_remove_version(self->stack, i--); } } // If strategy 1 succeeded, a new stack version will have been created which is able to handle // the current lookahead token. Now, in addition, try strategy 2 described above: skip the // current lookahead token by wrapping it in an ERROR node. // Don't pursue this additional strategy if there are already too many stack versions. if (did_recover && ts_stack_version_count(self->stack) > MAX_VERSION_COUNT) { ts_stack_halt(self->stack, version); ts_subtree_release(&self->tree_pool, lookahead); return; } // If the parser is still in the error state at the end of the file, just wrap everything // in an ERROR node and terminate. if (ts_subtree_is_eof(lookahead)) { LOG("recover_eof"); SubtreeArray children = array_new(); Subtree parent = ts_subtree_new_error_node(&self->tree_pool, &children, false, self->language); ts_stack_push(self->stack, version, parent, false, 1); ts_parser__accept(self, version, lookahead); return; } // Do not recover if the result would clearly be worse than some existing stack version. unsigned new_cost = current_error_cost + ERROR_COST_PER_SKIPPED_TREE + ts_subtree_total_bytes(lookahead) * ERROR_COST_PER_SKIPPED_CHAR + ts_subtree_total_size(lookahead).extent.row * ERROR_COST_PER_SKIPPED_LINE; if (ts_parser__better_version_exists(self, version, false, new_cost)) { ts_stack_halt(self->stack, version); ts_subtree_release(&self->tree_pool, lookahead); return; } // If the current lookahead token is an extra token, mark it as extra. This means it won't // be counted in error cost calculations. unsigned n; const TSParseAction *actions = ts_language_actions(self->language, 1, ts_subtree_symbol(lookahead), &n); if (n > 0 && actions[n - 1].type == TSParseActionTypeShift && actions[n - 1].params.extra) { MutableSubtree mutable_lookahead = ts_subtree_make_mut(&self->tree_pool, lookahead); ts_subtree_set_extra(&mutable_lookahead); lookahead = ts_subtree_from_mut(mutable_lookahead); } // Wrap the lookahead token in an ERROR. LOG("skip_token symbol:%s", TREE_NAME(lookahead)); SubtreeArray children = array_new(); array_reserve(&children, 1); array_push(&children, lookahead); MutableSubtree error_repeat = ts_subtree_new_node( &self->tree_pool, ts_builtin_sym_error_repeat, &children, 0, self->language ); // If other tokens have already been skipped, so there is already an ERROR at the top of the // stack, then pop that ERROR off the stack and wrap the two ERRORs together into one larger // ERROR. if (node_count_since_error > 0) { StackSliceArray pop = ts_stack_pop_count(self->stack, version, 1); // TODO: Figure out how to make this condition occur. // See https://github.com/atom/atom/issues/18450#issuecomment-439579778 // If multiple stack versions have merged at this point, just pick one of the errors // arbitrarily and discard the rest. if (pop.size > 1) { for (unsigned i = 1; i < pop.size; i++) { ts_subtree_array_delete(&self->tree_pool, &pop.contents[i].subtrees); } while (ts_stack_version_count(self->stack) > pop.contents[0].version + 1) { ts_stack_remove_version(self->stack, pop.contents[0].version + 1); } } ts_stack_renumber_version(self->stack, pop.contents[0].version, version); array_push(&pop.contents[0].subtrees, ts_subtree_from_mut(error_repeat)); error_repeat = ts_subtree_new_node( &self->tree_pool, ts_builtin_sym_error_repeat, &pop.contents[0].subtrees, 0, self->language ); } // Push the new ERROR onto the stack. ts_stack_push(self->stack, version, ts_subtree_from_mut(error_repeat), false, ERROR_STATE); if (ts_subtree_has_external_tokens(lookahead)) { ts_stack_set_last_external_token( self->stack, version, ts_subtree_last_external_token(lookahead) ); } } static bool ts_parser__advance( TSParser *self, StackVersion version, bool allow_node_reuse ) { TSStateId state = ts_stack_state(self->stack, version); uint32_t position = ts_stack_position(self->stack, version).bytes; Subtree last_external_token = ts_stack_last_external_token(self->stack, version); bool did_reuse = true; Subtree lookahead = NULL_SUBTREE; TableEntry table_entry = {.action_count = 0}; // If possible, reuse a node from the previous syntax tree. if (allow_node_reuse) { lookahead = ts_parser__reuse_node( self, version, &state, position, last_external_token, &table_entry ); } // Otherwise, try to reuse the token previously returned by the lexer. if (!lookahead.ptr) { did_reuse = false; lookahead = ts_parser__get_cached_token( self, state, position, last_external_token, &table_entry ); } // Otherwise, re-run the lexer. if (!lookahead.ptr) { lookahead = ts_parser__lex(self, version, state); ts_parser__set_cached_token(self, position, last_external_token, lookahead); ts_language_table_entry(self->language, state, ts_subtree_symbol(lookahead), &table_entry); } for (;;) { if (++self->operation_count == OP_COUNT_PER_TIMEOUT_CHECK) { self->operation_count = 0; if ( (self->cancellation_flag && atomic_load(self->cancellation_flag)) || (!clock_is_null(self->end_clock) && clock_is_gt(clock_now(), self->end_clock)) ) { ts_subtree_release(&self->tree_pool, lookahead); return false; } } StackVersion last_reduction_version = STACK_VERSION_NONE; for (uint32_t i = 0; i < table_entry.action_count; i++) { TSParseAction action = table_entry.actions[i]; switch (action.type) { case TSParseActionTypeShift: { if (action.params.repetition) break; TSStateId next_state; if (action.params.extra) { // TODO: remove when TREE_SITTER_LANGUAGE_VERSION 9 is out. if (state == ERROR_STATE) continue; next_state = state; LOG("shift_extra"); } else { next_state = action.params.state; LOG("shift state:%u", next_state); } if (ts_subtree_child_count(lookahead) > 0) { ts_parser__breakdown_lookahead(self, &lookahead, state, &self->reusable_node); next_state = ts_language_next_state(self->language, state, ts_subtree_symbol(lookahead)); } ts_parser__shift(self, version, next_state, lookahead, action.params.extra); if (did_reuse) reusable_node_advance(&self->reusable_node); return true; } case TSParseActionTypeReduce: { bool is_fragile = table_entry.action_count > 1; LOG("reduce sym:%s, child_count:%u", SYM_NAME(action.params.symbol), action.params.child_count); StackVersion reduction_version = ts_parser__reduce( self, version, action.params.symbol, action.params.child_count, action.params.dynamic_precedence, action.params.production_id, is_fragile ); if (reduction_version != STACK_VERSION_NONE) { last_reduction_version = reduction_version; } break; } case TSParseActionTypeAccept: { LOG("accept"); ts_parser__accept(self, version, lookahead); return true; } case TSParseActionTypeRecover: { if (ts_subtree_child_count(lookahead) > 0) { ts_parser__breakdown_lookahead(self, &lookahead, ERROR_STATE, &self->reusable_node); } ts_parser__recover(self, version, lookahead); if (did_reuse) reusable_node_advance(&self->reusable_node); return true; } } } if (last_reduction_version != STACK_VERSION_NONE) { ts_stack_renumber_version(self->stack, last_reduction_version, version); LOG_STACK(); state = ts_stack_state(self->stack, version); ts_language_table_entry( self->language, state, ts_subtree_leaf_symbol(lookahead), &table_entry ); continue; } if ( ts_subtree_is_keyword(lookahead) && ts_subtree_symbol(lookahead) != self->language->keyword_capture_token ) { ts_language_table_entry(self->language, state, self->language->keyword_capture_token, &table_entry); if (table_entry.action_count > 0) { LOG( "switch from_keyword:%s, to_word_token:%s", TREE_NAME(lookahead), SYM_NAME(self->language->keyword_capture_token) ); MutableSubtree mutable_lookahead = ts_subtree_make_mut(&self->tree_pool, lookahead); ts_subtree_set_symbol(&mutable_lookahead, self->language->keyword_capture_token, self->language); lookahead = ts_subtree_from_mut(mutable_lookahead); continue; } } if (state == ERROR_STATE) { ts_parser__recover(self, version, lookahead); return true; } if (ts_parser__breakdown_top_of_stack(self, version)) { continue; } LOG("detect_error"); ts_stack_pause(self->stack, version, ts_subtree_leaf_symbol(lookahead)); ts_subtree_release(&self->tree_pool, lookahead); return true; } } static unsigned ts_parser__condense_stack(TSParser *self) { bool made_changes = false; unsigned min_error_cost = UINT_MAX; for (StackVersion i = 0; i < ts_stack_version_count(self->stack); i++) { if (ts_stack_is_halted(self->stack, i)) { ts_stack_remove_version(self->stack, i); i--; continue; } ErrorStatus status_i = ts_parser__version_status(self, i); if (!status_i.is_in_error && status_i.cost < min_error_cost) { min_error_cost = status_i.cost; } for (StackVersion j = 0; j < i; j++) { ErrorStatus status_j = ts_parser__version_status(self, j); switch (ts_parser__compare_versions(self, status_j, status_i)) { case ErrorComparisonTakeLeft: made_changes = true; ts_stack_remove_version(self->stack, i); i--; j = i; break; case ErrorComparisonPreferLeft: case ErrorComparisonNone: if (ts_stack_merge(self->stack, j, i)) { made_changes = true; i--; j = i; } break; case ErrorComparisonPreferRight: made_changes = true; if (ts_stack_merge(self->stack, j, i)) { i--; j = i; } else { ts_stack_swap_versions(self->stack, i, j); } break; case ErrorComparisonTakeRight: made_changes = true; ts_stack_remove_version(self->stack, j); i--; j--; break; } } } while (ts_stack_version_count(self->stack) > MAX_VERSION_COUNT) { ts_stack_remove_version(self->stack, MAX_VERSION_COUNT); made_changes = true; } if (ts_stack_version_count(self->stack) > 0) { bool has_unpaused_version = false; for (StackVersion i = 0, n = ts_stack_version_count(self->stack); i < n; i++) { if (ts_stack_is_paused(self->stack, i)) { if (!has_unpaused_version && self->accept_count < MAX_VERSION_COUNT) { LOG("resume version:%u", i); min_error_cost = ts_stack_error_cost(self->stack, i); TSSymbol lookahead_symbol = ts_stack_resume(self->stack, i); ts_parser__handle_error(self, i, lookahead_symbol); has_unpaused_version = true; } else { ts_stack_remove_version(self->stack, i); i--; n--; } } else { has_unpaused_version = true; } } } if (made_changes) { LOG("condense"); LOG_STACK(); } return min_error_cost; } static bool ts_parser_has_outstanding_parse(TSParser *self) { return ( self->lexer.current_position.bytes > 0 || ts_stack_state(self->stack, 0) != 1 ); } // Parser - Public TSParser *ts_parser_new(void) { TSParser *self = ts_calloc(1, sizeof(TSParser)); ts_lexer_init(&self->lexer); array_init(&self->reduce_actions); array_reserve(&self->reduce_actions, 4); self->tree_pool = ts_subtree_pool_new(32); self->stack = ts_stack_new(&self->tree_pool); self->finished_tree = NULL_SUBTREE; self->reusable_node = reusable_node_new(); self->dot_graph_file = NULL; self->halt_on_error = false; self->cancellation_flag = NULL; self->timeout_duration = 0; self->end_clock = clock_null(); self->operation_count = 0; self->old_tree = NULL_SUBTREE; self->scratch_tree.ptr = &self->scratch_tree_data; self->included_range_differences = (TSRangeArray) array_new(); self->included_range_difference_index = 0; ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE); return self; } void ts_parser_delete(TSParser *self) { if (!self) return; ts_stack_delete(self->stack); if (self->reduce_actions.contents) { array_delete(&self->reduce_actions); } if (self->included_range_differences.contents) { array_delete(&self->included_range_differences); } if (self->old_tree.ptr) { ts_subtree_release(&self->tree_pool, self->old_tree); self->old_tree = NULL_SUBTREE; } ts_lexer_delete(&self->lexer); ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE); ts_subtree_pool_delete(&self->tree_pool); reusable_node_delete(&self->reusable_node); ts_parser_set_language(self, NULL); ts_free(self); } const TSLanguage *ts_parser_language(const TSParser *self) { return self->language; } bool ts_parser_set_language(TSParser *self, const TSLanguage *language) { if (language) { if (language->version > TREE_SITTER_LANGUAGE_VERSION) return false; if (language->version < TREE_SITTER_MIN_COMPATIBLE_LANGUAGE_VERSION) return false; } if (self->external_scanner_payload && self->language->external_scanner.destroy) { self->language->external_scanner.destroy(self->external_scanner_payload); } if (language && language->external_scanner.create) { self->external_scanner_payload = language->external_scanner.create(); } else { self->external_scanner_payload = NULL; } self->language = language; return true; } TSLogger ts_parser_logger(const TSParser *self) { return self->lexer.logger; } void ts_parser_set_logger(TSParser *self, TSLogger logger) { self->lexer.logger = logger; } void ts_parser_print_dot_graphs(TSParser *self, int fd) { if (self->dot_graph_file) { fclose(self->dot_graph_file); } if (fd >= 0) { self->dot_graph_file = fdopen(fd, "a"); } else { self->dot_graph_file = NULL; } } void ts_parser_halt_on_error(TSParser *self, bool should_halt_on_error) { self->halt_on_error = should_halt_on_error; } const size_t *ts_parser_cancellation_flag(const TSParser *self) { return (const size_t *)self->cancellation_flag; } void ts_parser_set_cancellation_flag(TSParser *self, const size_t *flag) { self->cancellation_flag = (const volatile size_t *)flag; } uint64_t ts_parser_timeout_micros(const TSParser *self) { return duration_to_micros(self->timeout_duration); } void ts_parser_set_timeout_micros(TSParser *self, uint64_t timeout_micros) { self->timeout_duration = duration_from_micros(timeout_micros); } void ts_parser_set_included_ranges(TSParser *self, const TSRange *ranges, uint32_t count) { ts_lexer_set_included_ranges(&self->lexer, ranges, count); } const TSRange *ts_parser_included_ranges(const TSParser *self, uint32_t *count) { return ts_lexer_included_ranges(&self->lexer, count); } void ts_parser_reset(TSParser *self) { if (self->language->external_scanner.deserialize) { self->language->external_scanner.deserialize(self->external_scanner_payload, NULL, 0); } if (self->old_tree.ptr) { ts_subtree_release(&self->tree_pool, self->old_tree); self->old_tree = NULL_SUBTREE; } reusable_node_clear(&self->reusable_node); ts_lexer_reset(&self->lexer, length_zero()); ts_stack_clear(self->stack); ts_parser__set_cached_token(self, 0, NULL_SUBTREE, NULL_SUBTREE); if (self->finished_tree.ptr) { ts_subtree_release(&self->tree_pool, self->finished_tree); self->finished_tree = NULL_SUBTREE; } self->accept_count = 0; } TSTree *ts_parser_parse(TSParser *self, const TSTree *old_tree, TSInput input) { if (!self->language || !input.read) return NULL; ts_lexer_set_input(&self->lexer, input); array_clear(&self->included_range_differences); self->included_range_difference_index = 0; if (ts_parser_has_outstanding_parse(self)) { LOG("resume_parsing"); } else if (old_tree) { ts_subtree_retain(old_tree->root); self->old_tree = old_tree->root; ts_range_array_get_changed_ranges( old_tree->included_ranges, old_tree->included_range_count, self->lexer.included_ranges, self->lexer.included_range_count, &self->included_range_differences ); reusable_node_reset(&self->reusable_node, old_tree->root); LOG("parse_after_edit"); LOG_TREE(self->old_tree); for (unsigned i = 0; i < self->included_range_differences.size; i++) { TSRange *range = &self->included_range_differences.contents[i]; LOG("different_included_range %u - %u", range->start_byte, range->end_byte); } } else { reusable_node_clear(&self->reusable_node); LOG("new_parse"); } uint32_t position = 0, last_position = 0, version_count = 0; self->operation_count = 0; if (self->timeout_duration) { self->end_clock = clock_after(clock_now(), self->timeout_duration); } else { self->end_clock = clock_null(); } do { for (StackVersion version = 0; version_count = ts_stack_version_count(self->stack), version < version_count; version++) { bool allow_node_reuse = version_count == 1; while (ts_stack_is_active(self->stack, version)) { LOG("process version:%d, version_count:%u, state:%d, row:%u, col:%u", version, ts_stack_version_count(self->stack), ts_stack_state(self->stack, version), ts_stack_position(self->stack, version).extent.row + 1, ts_stack_position(self->stack, version).extent.column); if (!ts_parser__advance(self, version, allow_node_reuse)) return NULL; LOG_STACK(); position = ts_stack_position(self->stack, version).bytes; if (position > last_position || (version > 0 && position == last_position)) { last_position = position; break; } } } unsigned min_error_cost = ts_parser__condense_stack(self); if (self->finished_tree.ptr && ts_subtree_error_cost(self->finished_tree) < min_error_cost) { break; } else if (self->halt_on_error && min_error_cost > 0) { ts_parser__halt_parse(self); break; } while (self->included_range_difference_index < self->included_range_differences.size) { TSRange *range = &self->included_range_differences.contents[self->included_range_difference_index]; if (range->end_byte <= position) { self->included_range_difference_index++; } else { break; } } } while (version_count != 0); ts_subtree_balance(self->finished_tree, &self->tree_pool, self->language); LOG("done"); LOG_TREE(self->finished_tree); TSTree *result = ts_tree_new( self->finished_tree, self->language, self->lexer.included_ranges, self->lexer.included_range_count ); self->finished_tree = NULL_SUBTREE; ts_parser_reset(self); return result; } TSTree *ts_parser_parse_string(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length) { return ts_parser_parse_string_encoding(self, old_tree, string, length, TSInputEncodingUTF8); } TSTree *ts_parser_parse_string_encoding(TSParser *self, const TSTree *old_tree, const char *string, uint32_t length, TSInputEncoding encoding) { TSStringInput input = {string, length}; return ts_parser_parse(self, old_tree, (TSInput) { &input, ts_string_input_read, encoding, }); } #undef LOG