{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TypeApplications #-} module TreeSitter.GenerateSyntax ( syntaxDatatype , astDeclarationsForLanguage ) where import Data.Aeson hiding (String) import Data.Foldable import Data.List import Data.List.NonEmpty (NonEmpty (..)) import Data.Text (Text) import Foreign.C.String import Foreign.Ptr import GHC.Generics hiding (Constructor, Datatype) import GHC.Records import Language.Haskell.TH as TH import Language.Haskell.TH.Syntax as TH import System.Directory import System.FilePath.Posix import TreeSitter.Deserialize (Children (..), Datatype (..), DatatypeName (..), Field (..), Multiple (..), Named (..), Required (..), Type (..)) import qualified TreeSitter.Language as TS import TreeSitter.Node import TreeSitter.Symbol (TSSymbol, toHaskellCamelCaseIdentifier, toHaskellPascalCaseIdentifier) import TreeSitter.Token import qualified TreeSitter.Unmarshal as TS -- | Derive Haskell datatypes from a language and its @node-types.json@ file. -- -- Datatypes will be generated according to the specification in the @node-types.json@ file, with anonymous leaf types defined as synonyms for the 'Token' datatype. -- -- Any datatypes among the node types which have already been defined in the module where the splice is run will be skipped, allowing customization of the representation of parts of the tree. Note that this should be used sparingly, as it imposes extra maintenance burden, particularly when the grammar is changed. This may be used to e.g. parse literals into Haskell equivalents (e.g. parsing the textual contents of integer literals into 'Integer's), and may require defining 'TS.UnmarshalAnn' or 'TS.SymbolMatching' instances for (parts of) the custom datatypes, depending on where and how the datatype occurs in the generated tree, in addition to the usual 'Foldable', 'Functor', etc. instances provided for generated datatypes. astDeclarationsForLanguage :: Ptr TS.Language -> FilePath -> Q [Dec] astDeclarationsForLanguage language filePath = do _ <- TS.addDependentFileRelative filePath currentFilename <- loc_filename <$> location pwd <- runIO getCurrentDirectory let invocationRelativePath = takeDirectory (pwd currentFilename) filePath input <- runIO (eitherDecodeFileStrict' invocationRelativePath) >>= either fail pure allSymbols <- runIO (getAllSymbols language) debugSymbolNames <- [d| debugSymbolNames :: [String] debugSymbolNames = $(listE (map (litE . stringL . debugPrefix) allSymbols)) |] (debugSymbolNames <>) . concat @[] <$> traverse (syntaxDatatype language allSymbols) input -- Build a list of all symbols getAllSymbols :: Ptr TS.Language -> IO [(String, Named)] getAllSymbols language = do count <- TS.ts_language_symbol_count language mapM getSymbol [(0 :: TSSymbol) .. fromIntegral (pred count)] where getSymbol i = do cname <- TS.ts_language_symbol_name language i n <- peekCString cname t <- TS.ts_language_symbol_type language i let named = if t == 0 then Named else Anonymous pure (n, named) -- Auto-generate Haskell datatypes for sums, products and leaf types syntaxDatatype :: Ptr TS.Language -> [(String, Named)] -> Datatype -> Q [Dec] syntaxDatatype language allSymbols datatype = skipDefined $ do typeParameterName <- newName "a" case datatype of SumType (DatatypeName _) _ subtypes -> do types' <- fieldTypesToNestedSum subtypes let fieldName = mkName ("get" <> nameStr) con <- recC name [TH.varBangType fieldName (TH.bangType strictness (pure types' `appT` varT typeParameterName))] hasFieldInstance <- makeHasFieldInstance (conT name) (varT typeParameterName) (varE fieldName) pure ( NewtypeD [] name [PlainTV typeParameterName] Nothing con [deriveGN, deriveStockClause, deriveAnyClassClause] : hasFieldInstance) ProductType (DatatypeName datatypeName) named children fields -> do con <- ctorForProductType datatypeName typeParameterName children fields result <- symbolMatchingInstance allSymbols name named datatypeName pure $ generatedDatatype name [con] typeParameterName:result -- Anonymous leaf types are defined as synonyms for the `Token` datatype LeafType (DatatypeName datatypeName) Anonymous -> do tsSymbol <- runIO $ withCStringLen datatypeName (\(s, len) -> TS.ts_language_symbol_for_name language s len False) pure [ TySynD name [] (ConT ''Token `AppT` LitT (StrTyLit datatypeName) `AppT` LitT (NumTyLit (fromIntegral tsSymbol))) ] LeafType (DatatypeName datatypeName) Named -> do con <- ctorForLeafType (DatatypeName datatypeName) typeParameterName result <- symbolMatchingInstance allSymbols name Named datatypeName pure $ generatedDatatype name [con] typeParameterName:result where -- Skip generating datatypes that have already been defined (overridden) in the module where the splice is running. skipDefined m = do isLocal <- lookupTypeName nameStr >>= maybe (pure False) isLocalName if isLocal then pure [] else m name = mkName nameStr nameStr = toNameString (datatypeNameStatus datatype) (getDatatypeName (TreeSitter.Deserialize.datatypeName datatype)) deriveStockClause = DerivClause (Just StockStrategy) [ ConT ''Eq, ConT ''Ord, ConT ''Show, ConT ''Generic, ConT ''Foldable, ConT ''Functor, ConT ''Traversable, ConT ''Generic1] deriveAnyClassClause = DerivClause (Just AnyclassStrategy) [ConT ''TS.Unmarshal] deriveGN = DerivClause (Just NewtypeStrategy) [ConT ''TS.SymbolMatching] generatedDatatype name cons typeParameterName = DataD [] name [PlainTV typeParameterName] Nothing cons [deriveStockClause, deriveAnyClassClause] makeHasFieldInstance :: TypeQ -> TypeQ -> ExpQ -> Q [Dec] makeHasFieldInstance ty param elim = [d|instance HasField "ann" $(ty `appT` param) $param where getField = TS.gann . $elim |] -- | Create TH-generated SymbolMatching instances for sums, products, leaves symbolMatchingInstance :: [(String, Named)] -> Name -> Named -> String -> Q [Dec] symbolMatchingInstance allSymbols name named str = do let tsSymbols = elemIndices (str, named) allSymbols names = intercalate ", " $ fmap (debugPrefix . (!!) allSymbols) tsSymbols [d|instance TS.SymbolMatching $(conT name) where matchedSymbols _ = tsSymbols showFailure _ node = "expected " <> $(litE (stringL names)) <> " but got " <> if nodeSymbol node == 65535 then "ERROR" else genericIndex debugSymbolNames (nodeSymbol node) <> " [" <> show r1 <> ", " <> show c1 <> "] -" <> " [" <> show r2 <> ", " <> show c2 <> "]" where TSPoint r1 c1 = nodeStartPoint node TSPoint r2 c2 = nodeEndPoint node|] -- | Prefix symbol names for debugging to disambiguate between Named and Anonymous nodes. debugPrefix :: (String, Named) -> String debugPrefix (name, Named) = name debugPrefix (name, Anonymous) = "_" <> name -- | Build Q Constructor for product types (nodes with fields) ctorForProductType :: String -> Name -> Maybe Children -> [(String, Field)] -> Q Con ctorForProductType constructorName typeParameterName children fields = ctorForTypes constructorName lists where lists = annotation : fieldList ++ childList annotation = ("ann", varT typeParameterName) fieldList = map (fmap toType) fields childList = toList $ fmap toTypeChild children toType (MkField required fieldTypes mult) = let ftypes = fieldTypesToNestedSum fieldTypes `appT` varT typeParameterName in case (required, mult) of (Required, Multiple) -> appT (conT ''NonEmpty) ftypes (Required, Single) -> ftypes (Optional, Multiple) -> appT (conT ''[]) ftypes (Optional, Single) -> appT (conT ''Maybe) ftypes toTypeChild (MkChildren field) = ("extra_children", toType field) -- | Build Q Constructor for leaf types (nodes with no fields or subtypes) ctorForLeafType :: DatatypeName -> Name -> Q Con ctorForLeafType (DatatypeName name) typeParameterName = ctorForTypes name [ ("ann", varT typeParameterName) -- ann :: a , ("text", conT ''Text) -- text :: Text ] -- | Build Q Constructor for records ctorForTypes :: String -> [(String, Q TH.Type)] -> Q Con ctorForTypes constructorName types = recC (toName Named constructorName) recordFields where recordFields = map (uncurry toVarBangType) types toVarBangType str type' = TH.varBangType (mkName . toHaskellCamelCaseIdentifier $ str) (TH.bangType strictness type') -- | Convert field types to Q types fieldTypesToNestedSum :: NonEmpty TreeSitter.Deserialize.Type -> Q TH.Type fieldTypesToNestedSum xs = go (toList xs) where combine lhs rhs = (conT ''(:+:) `appT` lhs) `appT` rhs -- (((((a :+: b) :+: c) :+: d)) :+: e) ((a :+: b) :+: (c :+: d)) convertToQType (MkType (DatatypeName n) named) = conT (toName named n) go [x] = convertToQType x go xs = let (l,r) = splitAt (length xs `div` 2) xs in combine (go l) (go r) -- | Create bang required to build records strictness :: BangQ strictness = TH.bang noSourceUnpackedness noSourceStrictness -- | Prepend "Anonymous" to named node when false, otherwise use regular toName toName :: Named -> String -> Name toName named str = mkName (toNameString named str) toNameString :: Named -> String -> String toNameString named str = prefix named <> toHaskellPascalCaseIdentifier str where prefix Anonymous = "Anonymous" prefix Named = "" -- | Get the 'Module', if any, for a given 'Name'. moduleForName :: Name -> Maybe Module moduleForName n = Module . PkgName <$> namePackage n <*> (ModName <$> nameModule n) -- | Test whether the name is defined in the module where the splice is executed. isLocalName :: Name -> Q Bool isLocalName n = (moduleForName n ==) . Just <$> thisModule