#include #include "./lexer.h" #include "./subtree.h" #include "./length.h" #include "./unicode.h" #define LOG(message, character) \ if (self->logger.log) { \ snprintf( \ self->debug_buffer, \ TREE_SITTER_SERIALIZATION_BUFFER_SIZE, \ 32 <= character && character < 127 ? \ message " character:'%c'" : \ message " character:%d", \ character \ ); \ self->logger.log( \ self->logger.payload, \ TSLogTypeLex, \ self->debug_buffer \ ); \ } static const int32_t BYTE_ORDER_MARK = 0xFEFF; static const TSRange DEFAULT_RANGE = { .start_point = { .row = 0, .column = 0, }, .end_point = { .row = UINT32_MAX, .column = UINT32_MAX, }, .start_byte = 0, .end_byte = UINT32_MAX }; // Check if the lexer has reached EOF. This state is stored // by setting the lexer's `current_included_range_index` such that // it has consumed all of its available ranges. static bool ts_lexer__eof(const TSLexer *_self) { Lexer *self = (Lexer *)_self; return self->current_included_range_index == self->included_range_count; } // Clear the currently stored chunk of source code, because the lexer's // position has changed. static void ts_lexer__clear_chunk(Lexer *self) { self->chunk = NULL; self->chunk_size = 0; self->chunk_start = 0; } // Call the lexer's input callback to obtain a new chunk of source code // for the current position. static void ts_lexer__get_chunk(Lexer *self) { self->chunk_start = self->current_position.bytes; self->chunk = self->input.read( self->input.payload, self->current_position.bytes, self->current_position.extent, &self->chunk_size ); if (!self->chunk_size) { self->current_included_range_index = self->included_range_count; self->chunk = NULL; } } // Decode the next unicode character in the current chunk of source code. // This assumes that the lexer has already retrieved a chunk of source // code that spans the current position. static void ts_lexer__get_lookahead(Lexer *self) { uint32_t position_in_chunk = self->current_position.bytes - self->chunk_start; const uint8_t *chunk = (const uint8_t *)self->chunk + position_in_chunk; uint32_t size = self->chunk_size - position_in_chunk; if (size == 0) { self->lookahead_size = 1; self->data.lookahead = '\0'; return; } UnicodeDecodeFunction decode = self->input.encoding == TSInputEncodingUTF8 ? ts_decode_utf8 : ts_decode_utf16; self->lookahead_size = decode(chunk, size, &self->data.lookahead); // If this chunk ended in the middle of a multi-byte character, // try again with a fresh chunk. if (self->data.lookahead == TS_DECODE_ERROR && size < 4) { ts_lexer__get_chunk(self); chunk = (const uint8_t *)self->chunk; size = self->chunk_size; self->lookahead_size = decode(chunk, size, &self->data.lookahead); } if (self->data.lookahead == TS_DECODE_ERROR) { self->lookahead_size = 1; } } // Advance to the next character in the source code, retrieving a new // chunk of source code if needed. static void ts_lexer__advance(TSLexer *_self, bool skip) { Lexer *self = (Lexer *)_self; if (!self->chunk) return; if (skip) { LOG("skip", self->data.lookahead); } else { LOG("consume", self->data.lookahead); } if (self->lookahead_size) { self->current_position.bytes += self->lookahead_size; if (self->data.lookahead == '\n') { self->current_position.extent.row++; self->current_position.extent.column = 0; } else { self->current_position.extent.column += self->lookahead_size; } } const TSRange *current_range = NULL; if (self->current_included_range_index < self->included_range_count) { current_range = &self->included_ranges[self->current_included_range_index]; if (self->current_position.bytes == current_range->end_byte) { self->current_included_range_index++; if (self->current_included_range_index < self->included_range_count) { current_range++; self->current_position = (Length) { current_range->start_byte, current_range->start_point, }; } else { current_range = NULL; } } } if (skip) self->token_start_position = self->current_position; if (current_range) { if (self->current_position.bytes >= self->chunk_start + self->chunk_size) { ts_lexer__get_chunk(self); } ts_lexer__get_lookahead(self); } else { ts_lexer__clear_chunk(self); self->data.lookahead = '\0'; self->lookahead_size = 1; } } // Mark that a token match has completed. This can be called multiple // times if a longer match is found later. static void ts_lexer__mark_end(TSLexer *_self) { Lexer *self = (Lexer *)_self; if (!ts_lexer__eof(&self->data)) { // If the lexer is right at the beginning of included range, // then the token should be considered to end at the *end* of the // previous included range, rather than here. TSRange *current_included_range = &self->included_ranges[ self->current_included_range_index ]; if ( self->current_included_range_index > 0 && self->current_position.bytes == current_included_range->start_byte ) { TSRange *previous_included_range = current_included_range - 1; self->token_end_position = (Length) { previous_included_range->end_byte, previous_included_range->end_point, }; return; } } self->token_end_position = self->current_position; } static uint32_t ts_lexer__get_column(TSLexer *_self) { Lexer *self = (Lexer *)_self; uint32_t goal_byte = self->current_position.bytes; self->current_position.bytes -= self->current_position.extent.column; self->current_position.extent.column = 0; if (self->current_position.bytes < self->chunk_start) { ts_lexer__get_chunk(self); } uint32_t result = 0; while (self->current_position.bytes < goal_byte) { ts_lexer__advance(&self->data, false); result++; } return result; } // Is the lexer at a boundary between two disjoint included ranges of // source code? This is exposed as an API because some languages' external // scanners need to perform custom actions at these bounaries. static bool ts_lexer__is_at_included_range_start(const TSLexer *_self) { const Lexer *self = (const Lexer *)_self; if (self->current_included_range_index < self->included_range_count) { TSRange *current_range = &self->included_ranges[self->current_included_range_index]; return self->current_position.bytes == current_range->start_byte; } else { return false; } } void ts_lexer_init(Lexer *self) { *self = (Lexer) { .data = { // The lexer's methods are stored as struct fields so that generated // parsers can call them without needing to be linked against this // library. .advance = ts_lexer__advance, .mark_end = ts_lexer__mark_end, .get_column = ts_lexer__get_column, .is_at_included_range_start = ts_lexer__is_at_included_range_start, .eof = ts_lexer__eof, .lookahead = 0, .result_symbol = 0, }, .chunk = NULL, .chunk_size = 0, .chunk_start = 0, .current_position = {0, {0, 0}}, .logger = { .payload = NULL, .log = NULL }, .included_ranges = NULL, .included_range_count = 0, .current_included_range_index = 0, }; ts_lexer_set_included_ranges(self, NULL, 0); } void ts_lexer_delete(Lexer *self) { ts_free(self->included_ranges); } static void ts_lexer_goto(Lexer *self, Length position) { self->current_position = position; bool found_included_range = false; // Move to the first valid position at or after the given position. for (unsigned i = 0; i < self->included_range_count; i++) { TSRange *included_range = &self->included_ranges[i]; if (included_range->end_byte > position.bytes) { if (included_range->start_byte > position.bytes) { self->current_position = (Length) { .bytes = included_range->start_byte, .extent = included_range->start_point, }; } self->current_included_range_index = i; found_included_range = true; break; } } if (found_included_range) { // If the current position is outside of the current chunk of text, // then clear out the current chunk of text. if (self->chunk && ( position.bytes < self->chunk_start || position.bytes >= self->chunk_start + self->chunk_size )) { ts_lexer__clear_chunk(self); } self->lookahead_size = 0; self->data.lookahead = '\0'; } // If the given position is beyond any of included ranges, move to the EOF // state - past the end of the included ranges. else { self->current_included_range_index = self->included_range_count; TSRange *last_included_range = &self->included_ranges[self->included_range_count - 1]; self->current_position = (Length) { .bytes = last_included_range->end_byte, .extent = last_included_range->end_point, }; ts_lexer__clear_chunk(self); self->lookahead_size = 1; self->data.lookahead = '\0'; } } void ts_lexer_set_input(Lexer *self, TSInput input) { self->input = input; ts_lexer__clear_chunk(self); ts_lexer_goto(self, self->current_position); } // Move the lexer to the given position. This doesn't do any work // if the parser is already at the given position. void ts_lexer_reset(Lexer *self, Length position) { if (position.bytes != self->current_position.bytes) { ts_lexer_goto(self, position); } } void ts_lexer_start(Lexer *self) { self->token_start_position = self->current_position; self->token_end_position = LENGTH_UNDEFINED; self->data.result_symbol = 0; if (!ts_lexer__eof(&self->data)) { if (!self->chunk_size) ts_lexer__get_chunk(self); if (!self->lookahead_size) ts_lexer__get_lookahead(self); if ( self->current_position.bytes == 0 && self->data.lookahead == BYTE_ORDER_MARK ) ts_lexer__advance(&self->data, true); } } void ts_lexer_finish(Lexer *self, uint32_t *lookahead_end_byte) { if (length_is_undefined(self->token_end_position)) { ts_lexer__mark_end(&self->data); } uint32_t current_lookahead_end_byte = self->current_position.bytes + 1; // In order to determine that a byte sequence is invalid UTF8 or UTF16, // the character decoding algorithm may have looked at the following byte. // Therefore, the next byte *after* the current (invalid) character // affects the interpretation of the current character. if (self->data.lookahead == TS_DECODE_ERROR) { current_lookahead_end_byte++; } if (current_lookahead_end_byte > *lookahead_end_byte) { *lookahead_end_byte = current_lookahead_end_byte; } } void ts_lexer_advance_to_end(Lexer *self) { while (self->chunk) { ts_lexer__advance(&self->data, false); } } void ts_lexer_mark_end(Lexer *self) { ts_lexer__mark_end(&self->data); } bool ts_lexer_set_included_ranges( Lexer *self, const TSRange *ranges, uint32_t count ) { if (count == 0 || !ranges) { ranges = &DEFAULT_RANGE; count = 1; } else { uint32_t previous_byte = 0; for (unsigned i = 0; i < count; i++) { const TSRange *range = &ranges[i]; if ( range->start_byte < previous_byte || range->end_byte < range->start_byte ) return false; previous_byte = range->end_byte; } } size_t size = count * sizeof(TSRange); self->included_ranges = ts_realloc(self->included_ranges, size); memcpy(self->included_ranges, ranges, size); self->included_range_count = count; ts_lexer_goto(self, self->current_position); return true; } TSRange *ts_lexer_included_ranges(const Lexer *self, uint32_t *count) { *count = self->included_range_count; return self->included_ranges; } #undef LOG