module Graphics.Triangulation.Triangulation where
import Graphics.Formats.Collada.ColladaTypes
import Graphics.Formats.Collada.Transformations (cycleNeighbours,cycleN)
import qualified Graphics.Triangulation.GJPTriangulation as T
import Data.Tuple.Select
import qualified Data.Vector as V
import Data.Vector (Vector, (!))
import Graphics.Formats.Collada.Vector2D3D (V2 (V), V3(V3))
import Debug.Trace
import List
type TriangulationFunction = Vector V2 -> [(Int,Int,Int)]
data Tree = Node Int Int [Tree]
instance Show Tree where
show (Node c p tree) = "Node " ++ (show c) ++ " " ++ (show p) ++ "[" ++ (concat(map show tree)) ++ "]"
triangulate :: TriangulationFunction -> Geometry -> Geometry
triangulate f (Geometry name prims (Vertices vname ps ns)) =
Geometry name (map triPoly prims) (Vertices vname ps ns)
where
triPoly (LP (LinePrimitive pIndices nIndices tex col)) =
PL (LinePrimitive (tri 0 pIndices) (normals pIndices nIndices) tex col)
tri :: Int -> Vector (Vector Int) -> Vector (Vector Int)
tri i pIndices | V.null pIndices = V.empty
| otherwise = (g ( map (ind (V.head pIndices)) (f (v2s ps (V.head pIndices))))) V.++
(tri (i+(V.length (V.head pIndices))) (V.tail pIndices))
ind pIndices (i0,i1,i2) = (pIndices V.! i0, pIndices V.! i1, pIndices V.! i2)
g :: [(Int,Int,Int)] -> Vector (Vector Int)
g [] = V.empty
g ((i0,i1,i2):xs) = V.cons (V.cons i0 $ V.cons i1 $ V.singleton i2) (g xs)
normals pIndices nIndices = V.replicate (V.sum (V.map V.length pIndices)) (V.head nIndices)
v2s :: Vector V3 -> Vector Int -> Vector V2
v2s ps pIndices | V.null pIndices = V.empty
| otherwise = V.cons (V x z) (v2s ps (V.tail pIndices))
where (V3 x y z) = ps V.! i
i = (V.head pIndices)
gjpTri :: Vector V2 -> [(Int,Int,Int)]
gjpTri = T.triangulation
deleteHoles :: Geometry -> Geometry
deleteHoles (Geometry name prims (Vertices vname ps ns)) =
Geometry name newPrims (Vertices vname ps ns)
where
newPrims = zipWith3 (\pInd tex col -> LP (LinePrimitive pInd pInd tex col)) flattenedTrees (map t prims) (map c prims)
flattenedTrees = zipWith (flatten vs) trees vertices
trees = map (generateTrees ps insidePoly) vertices
pI (LP (LinePrimitive pIndices nIndices tex col)) = pIndices
t (LP (LinePrimitive pIndices nIndices tex col)) = tex
c (LP (LinePrimitive pIndices nIndices tex col)) = col
vertices :: [Vector (Vector Int)]
vertices = map pI prims
vs = V.map (\(V3 x y z) -> V x z) ps
flatten :: Vector V2 -> [Tree] -> Vector (Vector Int) -> Vector (Vector Int)
flatten _ [] is = V.empty
flatten vs ((Node c poly tts):ts) is
| null tts = V.cons (alternate c (pdir poly) (is V.! poly)) (flatten vs ts is)
| otherwise = V.cons (embed vs (flatten vs tts is) (alternate c (pdir poly) (is V.! poly))) (flatten vs ts is)
where
pdir poly = polygonDirection $ V.map (vs V.!) (is V.! poly)
embed :: Vector V2 -> Vector (Vector Int) -> Vector Int -> Vector Int
embed vs sub_polys poly | V.null sub_polys = poly
| otherwise = embed vs (V.tail sub_polys) ((V.take (n+1) poly) V.++
(V.head sub_polys) V.++
(V.cons (V.head (V.head sub_polys)) (V.drop n poly)) )
where n = fst $ rotatePoly (vs V.! (V.head (V.head sub_polys))) (V.map (vs V.!) poly)
alternate :: Int -> Bool -> Vector Int -> Vector Int
alternate c b poly | (b && (even c)) || (not b && (odd c)) = poly
| otherwise = V.reverse poly
generateTrees :: Vector V3 -> (Vector V2 -> Vector V2 -> Bool) -> Vector (Vector Int) -> [Tree]
generateTrees vs f ps | V.null ps = []
| otherwise = (treesList containedPolys []) ++
(map (\x -> Node 0 x []) separateOutlines)
where containedPolys = filter (\[p0,p1] -> f (pvs p0) (pvs p1)) (combi ++ (map reverse combi))
combi = combinationsOf 2 [0..((V.length ps)1)]
separateOutlines = ([0..((V.length ps)1)]) \\ (nub $ concat containedPolys)
pvs p = V.map (\(V3 x y z) -> V x z) $ V.map (vs V.!) (ps V.! p)
treesList :: [[Int]] -> [Tree] -> [Tree]
treesList [] trees = trees
treesList ([x,y]:cs) trees = treesList cs (insertTrees [x,y] trees)
insertTrees :: [Int] -> [Tree] -> [Tree]
insertTrees [x,y] trees | or (map fst ins) = map snd ins
| otherwise = (map snd ins) ++ [ Node 0 y [Node 1 x []] ]
where ins = map (insertTree [x,y]) trees
insertTree :: [Int] -> Tree -> (Bool, Tree)
insertTree [x,y] (Node c i []) | y == i = (True, Node c i [Node (c+1) x []] )
| otherwise = (False, Node c i [])
insertTree [x,y] (Node c i trees) | y == i = (True, Node c i ((Node (c+1) x []):trees) )
| otherwise = (b, Node c i (map snd subtrees))
where subtrees = map (insertTree [x,y]) trees
b = or (map fst subtrees)
combinationsOf 0 _ = [[]]
combinationsOf _ [] = []
combinationsOf k (x:xs) = map (x:) (combinationsOf (k1) xs) ++ combinationsOf k xs
rotatePoly :: V2 -> Vector V2 -> (Int,Float)
rotatePoly p poly = nearest p poly (1) 0 0
nearest :: V2 -> Vector V2 -> Float -> Int -> Int -> (Int,Float)
nearest (V x0 y0) ps dist l ml | V.null ps = (ml,dist)
| (newDist < dist) || (dist < 0) = nearest (V x0 y0) (V.tail ps) newDist (l+1) l
| otherwise = nearest (V x0 y0) (V.tail ps) dist (l+1) ml
where newDist = (x0x1)*(x0x1)+(y0y1)*(y0y1)
(V x1 y1) = V.head ps
insidePoly :: Vector V2 -> Vector V2 -> Bool
insidePoly poly1 poly2 | V.null poly1 = False
| V.null poly2 = False
| otherwise = pointInside (V.head poly1) poly2
pointInside :: V2 -> Vector V2 -> Bool
pointInside (V x y) poly = (V.length intersectPairs) `mod` 2 == 1
where intersectPairs = V.filter (\p -> positiveXAxis p && aboveBelow p) allPairs
allPairs = cycleNeighbours poly
positiveXAxis p = (x0 p) > x || (x1 p) > x
aboveBelow p = (((y0 p)> y && (y1 p)< y) || ((y0 p) < y && (y1 p) > y))
specialCases p = (((dir1 p) > 0 && (dir2 p) <= 0) || ((dir1 p) <= 0 && (dir2 p) > 0))
dir1 p = cross ((x1 p)(x0 p),(y1 p)(y0 p)) (1,0)
dir2 p = cross ((x1 p)(x0 p),(y1 p)(y0 p)) (x(x0 p),y(y0 p))
cross (a0,b0) (a1,b1) = a0*b1 a1*b0
x0 p = (\(V x y) -> x) (V.head p)
x1 p = (\(V x y) -> x) (V.last p)
y0 p = (\(V x y) -> y) (V.head p)
y1 p = (\(V x y) -> y) (V.last p)
polygonDirection :: Vector V2 -> Bool
polygonDirection poly | dir > 0 = True
| dir < 0 = False
| dir ==0 = (x0 > x1) || (y0 < y1)
where p = V.fromList $ nub $ V.toList poly
(V x0 y0) = p V.! lminus
(V x1 y1) = p V.! lplus
dir = area2 (p!lminus) (p!l) (p!lplus)
l = maxim poly 0 0 (1000000,1000000)
lminus = (l1) `mod` (V.length p)
lplus = (l+1) `mod` (V.length p)
maxim :: Vector V2 -> Int -> Int -> (Float,Float) -> Int
maxim xs count ml (mx,my) | V.null xs = ml
| (x > mx) || (x >= mx && y > my) = maxim (V.tail xs) (count+1) count (x, y)
| otherwise = maxim (V.tail xs) (count+1) ml (mx,my)
where (V x y) = V.head xs
isRightTurnOrOn m x p = (area2 m x p) <= 0
isLeftTurn :: V2 -> V2 -> V2 -> Bool
isLeftTurn m x p = (area2 m x p) > 0
area2 (V x2 y2) (V x0 y0) (V x1 y1) = (x1x0)*(y2y0)(x2x0)*(y1y0)