module Data.Algorithm.TSNE.Stepping where
import Control.Applicative
import Control.Exception (assert)
import Data.List(zipWith4)
import Data.Algorithm.TSNE.Types
import Data.Algorithm.TSNE.Utils
stepTSNE :: TSNEOptions -> TSNEInput -> [[Probability]] -> TSNEState -> TSNEState
stepTSNE opts vs ps st = TSNEState i' s'' g' d'
where
i = stIteration st
s = stSolution st
g = stGains st
d = stDeltas st
gr = gradients ps st
i' = i + 1
s' = recenter $ z (+) s d'
g' = z3 newGain g d gr
d' = z3 (newDelta (tsneLearningRate opts) i) g' d gr
z = zipWith.zipWith
z3 = zipWith3.zipWith3
s'' = assert (length s' == length vs) s'
newGain :: Gain -> Delta -> Gradient -> Gain
newGain g d gr = max 0.01 g'
where
g' = if signum d == signum gr
then g * 0.8
else g + 0.2
newDelta :: Double -> Int -> Gain -> Delta -> Gradient -> Delta
newDelta e i g' d gr = (m * d) (e * g' * gr)
where
m = if i < 250 then 0.5 else 0.8
gradients :: [[Probability]] -> TSNEState -> [[Gradient]]
gradients pss st = gradient <$> ss
where
gradient :: [Double] -> [Gradient]
gradient s = zipWith4 (f s) s pss qss qss'
ss = stSolution st
i = stIteration st
qss = qdist ss
qss' = qdist' ss
f :: [Double] -> Double -> [Double] -> [Double] -> [Double] -> Gradient
f s x ps qs qs' = sum $ zipWith4 g s ps qs qs'
where
g y p q q' = m * (x y)
where
m = 4 * (k * p q') * q
k = if i < 100 then 4 else 1
cost :: [[Double]] -> TSNEState -> Double
cost pss st = sumsum $ (zipWith.zipWith) c pss (qdist' (stSolution st))
where
c p q = p * log q