-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/
-- | Typed type representations and equality proofs
--
-- Typed type representations and equality proofs
--
-- Project wiki page: http://haskell.org/haskellwiki/ty
--
-- Copyright 2009-2012 Conal Elliott; BSD3 license.
@package ty
@version 0.1.4
-- | Type equality proofs
module Data.Proof.EQ
-- | Type equality proof
data (:=:) :: * -> * -> *
Refl :: a :=: a
-- | Lift proof through a unary type constructor
liftEq :: a :=: a' -> f a :=: f a'
-- | Lift proof through a binary type constructor (including '(,)')
liftEq2 :: a :=: a' -> b :=: b' -> f a b :=: f a' b'
-- | Lift proof through a ternary type constructor (including '(,,)')
liftEq3 :: a :=: a' -> b :=: b' -> c :=: c' -> f a b c :=: f a' b' c'
-- | Lift proof through a quaternary type constructor (including '(,,,)')
liftEq4 :: a :=: a' -> b :=: b' -> c :=: c' -> d :=: d' -> f a b c d :=: f a' b' c' d'
-- | Commutativity
commEq :: a :=: a' -> a' :=: a
-- | Transitivity
transEq :: a :=: a' -> a' :=: a'' -> a :=: a''
-- | Type class for typed type representations
module Data.IsTy
-- | Type class for typed type representations
class IsTy f where type family IsTyConstraint f z :: Constraint type instance IsTyConstraint f z = Yes f z
tyEq :: (IsTy f, IsTyConstraint f a, IsTyConstraint f b) => f a -> f b -> Maybe (a :=: b)
-- | Type class for typed type representations
class IsTy2 f where type family IsTy2Constraint f u v :: Constraint type instance IsTy2Constraint f u v = Yes2 f u v
tyEq2 :: (IsTy2 f, IsTy2Constraint f a b, IsTy2Constraint f c d) => f a b -> f c d -> Maybe ((a, b) :=: (c, d))
instance Yes2 f a b
instance Yes f a
-- | Typed typerefs
module Data.Ty
-- | The class Typeable allows a concrete representation of a type
-- to be calculated.
class Typeable a
-- | Phantom type wrapper around a TypeRep
data Ty a
tyRep :: Ty a -> TypeRep
ty :: Typeable a => Ty a
-- | The Ty of a value
tyOf :: Typeable a => a -> Ty a
-- | The Ty of a value from a constructor application
tyOf1 :: Typeable a => f a -> Ty a
-- | The Ty of a value from a nested constructor application
tyOf2 :: Typeable a => g (f a) -> Ty a
-- | Equality of typed values. Just Refl means the
-- the types match and the values match.
(=:=) :: (Typeable a, Typeable b, Eq a) => a -> b -> Maybe (a :=: b)
data AsPairTy :: * -> *
PairTy :: Ty a -> Ty b -> AsPairTy (a, b)
asPairTy :: Ty t -> Maybe (AsPairTy t)
instance Eq (Ty a)
instance IsTy Ty
instance Show (Ty a)