Data.Type.Natural
data Nat
data SSym0 l
type SSym1 t
type ZSym0
type SNat z
data family Sing a
data MinSym0 l
data MinSym1 l l
type MinSym2 t t
data MaxSym0 l
data MaxSym1 l l
type MaxSym2 t t
type n :+: m
data (:+$) l
data l :+$$ l
type t :+$$$ t
type n :*: m
data (:*$) l
data l :*$$ l
type t :*$$$ t
type n :-: m
type n :**: m
data (:-$) l
data l :-$$ l
type t :-$$$ t
data Leq n m
class n :<= m
data (:<<=$) l
data l :<<=$$ l
type t :<<=$$$ t
type LeqInstance n m
type LeqTrueInstance a b
Leqtype Zero
type One
type Two
type Three
type Four
type Five
type Six
type Seven
type Eight
type Nine
type Ten
type Eleven
type Twelve
type Thirteen
type Fourteen
type Fifteen
type Sixteen
type Seventeen
type Eighteen
type Nineteen
type Twenty
type ZeroSym0
type OneSym0
type TwoSym0
type ThreeSym0
type FourSym0
type FiveSym0
type SixSym0
type SevenSym0
type EightSym0
type NineSym0
type TenSym0
type ElevenSym0
type TwelveSym0
type ThirteenSym0
type FourteenSym0
type FifteenSym0
type SixteenSym0
type SeventeenSym0
type EighteenSym0
type NineteenSym0
type TwentySym0
type N0
type N1
type N2
type N3
type N4
type N5
type N6
type N7
type N8
type N9
type N10
type N11
type N12
type N13
type N14
type N15
type N16
type N17
type N18
type N19
type N20
type N0Sym0
type N1Sym0
type N2Sym0
type N3Sym0
type N4Sym0
type N5Sym0
type N6Sym0
type N7Sym0
type N8Sym0
type N9Sym0
type N10Sym0
type N11Sym0
type N12Sym0
type N13Sym0
type N14Sym0
type N15Sym0
type N16Sym0
type N17Sym0
type N18Sym0
type N19Sym0
type N20Sym0