Prelude.Type
class Lambda1 a c a'
class Lambda2 a b c a' b'
class Lambda3 a b d c a' b' d'
class Lambda4 a b d e c a' b' d' e'
type family Lambda :: k
class If p a b
class Case a c
class Case' p b a cs
data Alternative a b
class Show a b
class Shows a b c
class Kind a k'
class (a (==) b) p
class (a (/=) b) p
class Compare a b o
class (a (<) b) p
class (a (<=) b) p
class (a (>=) b) p
class (a (>) b) p
class Max a b max
class Min a b min
class ToEnum i a
class FromEnum a i
class Succ a b
class Pred a b
class EnumFromTo a b l
class EnumFromThenTo a c b l
class EnumFromToBy a b c l
class MinBound a
class MaxBound a
class Not a b
class (a (||) b) c
class (a (&&) b) c
class Fst p x
class Snd p x
data StarKind
class Compose1 f g x z
class Compose2 f g x z a
class Compose3 f g x z a b
class Compose4 f g x z a b c
type O
type family Compose :: k
class Partial1 f x y
class Partial2 f x m y
class Partial3 f x m n y
class Partial4 f x m n o y
type family Partial :: k
class Apply1 f x
class Apply2 f x e
class Apply3 f x e g
class Apply4 f x e h g
type family a ($) b :: k
class Id a b
class Flip1 f x y
class Flip2 f x y m
class Flip3 f x y m n
class Flip4 f x y m n o
type family Flip :: (x -> y -> k) -> y -> x -> k
class Const1 a b c
class Const2 a b c d
class Const3 a b c d e
class Const4 a b c d e f
type family Const :: k
class Until p f x y
class ShowsTail a x y
class Map f l j
class FoldR f nil list ret
class FoldL f accum list ret
class Head l x
class Tail l x
class Last l x
class Init l x
class Null l p
class Length l i
class (l (!!) n) x
class Drop i l k
class (a (++) b) c
type Concat
class ConcatMap f a b
class ScanL f x l k
class ScanR f x l k
class ScanFold1 c x y z
type ScanL1
type ScanR1
type FoldL1
type FoldR1
class Replicate i a l
class Take i a b
class SplitAt i a b
class TakeWhile f x y
class DropWhile f x y
class Span f x y
class Break f x y
type And
type Or
type Any
type All
class Elem a b p
type NotElem
type Maximum
class ShowsInteger i x y
class (a (+) b) sum
class AddWithCarry carry a b sum
class Minus a b dif
class Negate a b
class (a (*) b) prod
class Signum a b
class Signum' a b
class Abs a b
class Subtract a b dif
class Even a p
class Odd a p
class Gcd a b c
class Gcd' x y z
class Error a
class ERROR a
class AsKindOf a b
class Xor a b c
class (a (.&.) b) c
class Complement a b
class QuotRem a b c
class QuotRem' a b q r
class Rem a b c
class Quot a b c
class TypeEq x y b
class TypeEq' q x y b
class TypeEq'' q x y b