{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE InstanceSigs #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeInType #-} {-# LANGUAGE ViewPatterns #-} #if __GLASGOW_HASKELL__ >= 806 {-# LANGUAGE QuantifiedConstraints #-} #endif -- {-# OPTIONS_GHC -ddump-simpl -dsuppress-idinfo -dsuppress-coercions -dsuppress-type-applications -dsuppress-uniques -dsuppress-module-prefixes #-} {- | Internal API for 'TypeRepMap' and operations on it. The functions here do not have any stability guarantees and can change between minor versions. If you need to use this module for purposes other than tests, create an issue. -} module Data.TypeRepMap.Internal where import Prelude hiding (lookup) import Control.DeepSeq import Control.Monad.ST (ST, runST) import Control.Monad.Zip (mzip) import Data.Function (on) import Data.Kind (Type) import Data.Type.Equality ((:~:) (..), TestEquality (..)) import Data.List (intercalate, nubBy) import Data.Primitive.Array (Array, MutableArray, indexArray, mapArray', readArray, sizeofArray, thawArray, unsafeFreezeArray, writeArray) import Data.Primitive.PrimArray (PrimArray, indexPrimArray, sizeofPrimArray) import Data.Semigroup (Semigroup (..)) import GHC.Base (Any, Int (..), Int#, (*#), (+#), (<#)) import GHC.Exts (IsList (..), inline, sortWith) import GHC.Fingerprint (Fingerprint (..)) import GHC.Prim (eqWord#, ltWord#) import GHC.Word (Word64 (..)) import Type.Reflection (SomeTypeRep (..), TypeRep, Typeable, typeRep, withTypeable) import Type.Reflection.Unsafe (typeRepFingerprint) import Unsafe.Coerce (unsafeCoerce) import qualified Data.Map.Strict as Map import qualified GHC.Exts as GHC (fromList, toList) {- | 'TypeRepMap' is a heterogeneous data structure similar in its essence to 'Data.Map.Map' with types as keys, where each value has the type of its key. In addition to that, each value is wrapped in an interpretation @f@. Here is an example of using 'Prelude.Maybe' as an interpretation, with a comparison to 'Data.Map.Map': @ 'Data.Map.Map' 'Prelude.String' ('Prelude.Maybe' 'Prelude.String') 'TypeRepMap' 'Prelude.Maybe' --------------------------- --------------------- \"Int\" -> Just \"5\" 'Prelude.Int' -> Just 5 \"Bool\" -> Just \"True\" 'Prelude.Bool' -> Just 'Prelude.True' \"Char\" -> Nothing 'Prelude.Char' -> Nothing @ The runtime representation of 'TypeRepMap' is an array, not a tree. This makes 'lookup' significantly more efficient. -} data TypeRepMap (f :: k -> Type) = TypeRepMap { fingerprintAs :: {-# UNPACK #-} !(PrimArray Word64) -- ^ first components of key fingerprints , fingerprintBs :: {-# UNPACK #-} !(PrimArray Word64) -- ^ second components of key fingerprints , trAnys :: {-# UNPACK #-} !(Array Any) -- ^ values stored in the map , trKeys :: {-# UNPACK #-} !(Array Any) -- ^ typerep keys } -- ^ an unsafe constructor for 'TypeRepMap' instance NFData (TypeRepMap f) where rnf x = rnf (keys x) `seq` () -- | Shows only keys. instance Show (TypeRepMap f) where show TypeRepMap{..} = "TypeRepMap [" ++ showKeys ++ "]" where showKeys :: String showKeys = intercalate ", " $ toList $ mapArray' (show . anyToTypeRep) trKeys -- | Uses 'union' to combine 'TypeRepMap's. instance Semigroup (TypeRepMap f) where (<>) :: TypeRepMap f -> TypeRepMap f -> TypeRepMap f (<>) = union {-# INLINE (<>) #-} instance Monoid (TypeRepMap f) where mempty = TypeRepMap mempty mempty mempty mempty mappend = (<>) {-# INLINE mempty #-} {-# INLINE mappend #-} #if __GLASGOW_HASKELL__ >= 806 instance (forall a. Typeable a => Eq (f a)) => Eq (TypeRepMap f) where tm1 == tm2 = size tm1 == size tm2 && go 0 where go :: Int -> Bool go i | i == size tm1 = True | otherwise = case testEquality tr1i tr2i of Nothing -> False Just Refl -> repEq tr1i (fromAny tv1i) (fromAny tv2i) && go (i + 1) where tr1i :: TypeRep x tr1i = anyToTypeRep $ indexArray (trKeys tm1) i tr2i :: TypeRep y tr2i = anyToTypeRep $ indexArray (trKeys tm2) i tv1i, tv2i :: Any tv1i = indexArray (trAnys tm1) i tv2i = indexArray (trAnys tm2) i repEq :: TypeRep x -> f x -> f x -> Bool repEq tr = withTypeable tr (==) #endif -- | Returns the list of 'Fingerprint's from 'TypeRepMap'. toFingerprints :: TypeRepMap f -> [Fingerprint] toFingerprints TypeRepMap{..} = zipWith Fingerprint (GHC.toList fingerprintAs) (GHC.toList fingerprintBs) {- | A 'TypeRepMap' with no values stored in it. prop> size empty == 0 prop> member @a empty == False -} empty :: TypeRepMap f empty = mempty {-# INLINE empty #-} {- | Construct a 'TypeRepMap' with a single element. prop> size (one x) == 1 prop> member @a (one (x :: f a)) == True -} one :: forall a f . Typeable a => f a -> TypeRepMap f one x = insert x empty {-# INLINE one #-} {- | Insert a value into a 'TypeRepMap'. prop> size (insert v tm) >= size tm prop> member @a (insert (x :: f a) tm) == True -} insert :: forall a f . Typeable a => f a -> TypeRepMap f -> TypeRepMap f insert x = fromTriples . addX . toTriples where tripleX :: (Fingerprint, Any, Any) tripleX@(fpX, _, _) = (calcFp @a, toAny x, unsafeCoerce $ typeRep @a) addX :: [(Fingerprint, Any, Any)] -> [(Fingerprint, Any, Any)] addX l = tripleX : deleteByFst fpX l {-# INLINE insert #-} -- Extract the kind of a type. We use it to work around lack of syntax for -- inferred type variables (which are not subject to type applications). type KindOf (a :: k) = k {- | Delete a value from a 'TypeRepMap'. prop> size (delete @a tm) <= size tm prop> member @a (delete @a tm) == False >>> tm = delete @Bool $ insert (Just True) $ one (Just 'a') >>> size tm 1 >>> member @Bool tm False >>> member @Char tm True -} delete :: forall a (f :: KindOf a -> Type) . Typeable a => TypeRepMap f -> TypeRepMap f delete = fromTriples . deleteByFst (typeFp @a) . toTriples {-# INLINE delete #-} {- | Update a value at a specific key with the result of the provided function. When the key is not a member of the map, the original map is returned. >>> trmap = fromList @(TypeRepMap Identity) [WrapTypeable $ Identity "a"] >>> lookup @String $ adjust (fmap (++ "ww")) trmap Just (Identity "aww") -} adjust :: forall a f . Typeable a => (f a -> f a) -> TypeRepMap f -> TypeRepMap f adjust fun tr = case cachedBinarySearch (typeFp @a) (fingerprintAs tr) (fingerprintBs tr) of Nothing -> tr Just i -> tr {trAnys = changeAnyArr i (trAnys tr)} where changeAnyArr :: Int -> Array Any -> Array Any changeAnyArr i trAs = runST $ do let n = sizeofArray trAs mutArr <- thawArray trAs 0 n a <- toAny . fun . fromAny <$> readArray mutArr i writeArray mutArr i a unsafeFreezeArray mutArr {-# INLINE adjust #-} {- | Map over the elements of a 'TypeRepMap'. >>> tm = insert (Identity True) $ one (Identity 'a') >>> lookup @Bool tm Just (Identity True) >>> lookup @Char tm Just (Identity 'a') >>> tm2 = hoist ((:[]) . runIdentity) tm >>> lookup @Bool tm2 Just [True] >>> lookup @Char tm2 Just "a" -} hoist :: (forall x. f x -> g x) -> TypeRepMap f -> TypeRepMap g hoist f (TypeRepMap as bs ans ks) = TypeRepMap as bs (mapArray' (toAny . f . fromAny) ans) ks {-# INLINE hoist #-} hoistA :: (Applicative t) => (forall x. f x -> t (g x)) -> TypeRepMap f -> t (TypeRepMap g) hoistA f (TypeRepMap as bs (toList -> ans) ks) = (\l -> TypeRepMap as bs (fromList $ map toAny l) ks) <$> traverse (f . fromAny) ans {-# INLINE hoistA #-} hoistWithKey :: forall f g. (forall x. Typeable x => f x -> g x) -> TypeRepMap f -> TypeRepMap g hoistWithKey f (TypeRepMap as bs ans ks) = TypeRepMap as bs newAns ks where newAns = mapArray' mapAns (mzip ans ks) mapAns (a, k) = toAny $ withTr (unsafeCoerce k) $ fromAny a withTr :: forall x. TypeRep x -> f x -> g x withTr t = withTypeable t f {-# INLINE hoistWithKey #-} -- | The union of two 'TypeRepMap's using a combining function. unionWith :: forall f. (forall x. Typeable x => f x -> f x -> f x) -> TypeRepMap f -> TypeRepMap f -> TypeRepMap f unionWith f m1 m2 = fromTriples $ toTripleList $ Map.unionWith combine (fromTripleList $ toTriples m1) (fromTripleList $ toTriples m2) where f' :: forall x. TypeRep x -> f x -> f x -> f x f' tr = withTypeable tr f combine :: (Any, Any) -> (Any, Any) -> (Any, Any) combine (av, ak) (bv, _) = (toAny $ f' (fromAny ak) (fromAny av) (fromAny bv), ak) fromTripleList :: Ord a => [(a, b, c)] -> Map.Map a (b, c) fromTripleList = Map.fromList . map (\(a, b, c) -> (a, (b, c))) toTripleList :: Map.Map a (b, c) -> [(a, b, c)] toTripleList = map (\(a, (b, c)) -> (a, b, c)) . Map.toList {-# INLINE unionWith #-} -- | The (left-biased) union of two 'TypeRepMap's. It prefers the first map when -- duplicate keys are encountered, i.e. @'union' == 'unionWith' const@. union :: TypeRepMap f -> TypeRepMap f -> TypeRepMap f union = unionWith const {-# INLINE union #-} {- | Check if a value of the given type is present in a 'TypeRepMap'. >>> member @Char $ one (Identity 'a') True >>> member @Bool $ one (Identity 'a') False -} member :: forall a (f :: KindOf a -> Type) . Typeable a => TypeRepMap f -> Bool member tm = case lookup @a tm of Nothing -> False Just _ -> True {-# INLINE member #-} {- | Lookup a value of the given type in a 'TypeRepMap'. >>> x = lookup $ insert (Identity (11 :: Int)) empty >>> x :: Maybe (Identity Int) Just (Identity 11) >>> x :: Maybe (Identity ()) Nothing -} lookup :: forall a f . Typeable a => TypeRepMap f -> Maybe (f a) lookup tVect = fromAny . (trAnys tVect `indexArray`) <$> cachedBinarySearch (typeFp @a) (fingerprintAs tVect) (fingerprintBs tVect) {-# INLINE lookup #-} -- | Get the amount of elements in a 'TypeRepMap'. size :: TypeRepMap f -> Int size = sizeofPrimArray . fingerprintAs {-# INLINE size #-} -- | Return the list of 'SomeTypeRep' from the keys. keys :: TypeRepMap f -> [SomeTypeRep] keys TypeRepMap{..} = SomeTypeRep . anyToTypeRep <$> toList trKeys {-# INLINE keys #-} -- | Binary searched based on this article -- http://bannalia.blogspot.com/2015/06/cache-friendly-binary-search.html -- with modification for our two-vector search case. cachedBinarySearch :: Fingerprint -> PrimArray Word64 -> PrimArray Word64 -> Maybe Int cachedBinarySearch (Fingerprint (W64# a) (W64# b)) fpAs fpBs = inline (go 0#) where go :: Int# -> Maybe Int go i = case i <# len of 0# -> Nothing _ -> let !(W64# valA) = indexPrimArray fpAs (I# i) in case a `ltWord#` valA of 0# -> case a `eqWord#` valA of 0# -> go (2# *# i +# 2#) _ -> let !(W64# valB) = indexPrimArray fpBs (I# i) in case b `eqWord#` valB of 0# -> case b `ltWord#` valB of 0# -> go (2# *# i +# 2#) _ -> go (2# *# i +# 1#) _ -> Just (I# i) _ -> go (2# *# i +# 1#) len :: Int# len = let !(I# l) = sizeofPrimArray fpAs in l {-# INLINE cachedBinarySearch #-} ---------------------------------------------------------------------------- -- Internal functions ---------------------------------------------------------------------------- toAny :: f a -> Any toAny = unsafeCoerce fromAny :: Any -> f a fromAny = unsafeCoerce anyToTypeRep :: Any -> TypeRep f anyToTypeRep = unsafeCoerce typeFp :: forall a . Typeable a => Fingerprint typeFp = typeRepFingerprint $ typeRep @a {-# INLINE typeFp #-} toTriples :: TypeRepMap f -> [(Fingerprint, Any, Any)] toTriples tm = zip3 (toFingerprints tm) (GHC.toList $ trAnys tm) (GHC.toList $ trKeys tm) deleteByFst :: Eq a => a -> [(a, b, c)] -> [(a, b, c)] deleteByFst x = filter ((/= x) . fst3) nubByFst :: (Eq a) => [(a, b, c)] -> [(a, b, c)] nubByFst = nubBy ((==) `on` fst3) fst3 :: (a, b, c) -> a fst3 (a, _, _) = a ---------------------------------------------------------------------------- -- Functions for testing and benchmarking ---------------------------------------------------------------------------- -- | Existential wrapper around 'Typeable' indexed by @f@ type parameter. -- Useful for 'TypeRepMap' structure creation form list of 'WrapTypeable's. data WrapTypeable f where WrapTypeable :: Typeable a => f a -> WrapTypeable f instance Show (WrapTypeable f) where show (WrapTypeable (_ :: f a)) = show $ calcFp @a wrapTypeable :: TypeRep a -> f a -> WrapTypeable f wrapTypeable tr = withTypeable tr WrapTypeable {- | prop> fromList . toList == 'id' Creates 'TypeRepMap' from a list of 'WrapTypeable's. >>> show $ fromList [WrapTypeable $ Identity True, WrapTypeable $ Identity 'a'] TypeRepMap [Bool, Char] -} instance IsList (TypeRepMap f) where type Item (TypeRepMap f) = WrapTypeable f fromList :: [WrapTypeable f] -> TypeRepMap f fromList = fromTriples . map (\x -> (fp x, an x, k x)) where fp :: WrapTypeable f -> Fingerprint fp (WrapTypeable (_ :: f a)) = calcFp @a an :: WrapTypeable f -> Any an (WrapTypeable x) = toAny x k :: WrapTypeable f -> Any k (WrapTypeable (_ :: f a)) = unsafeCoerce $ typeRep @a toList :: TypeRepMap f -> [WrapTypeable f] toList = map toWrapTypeable . toTriples where toWrapTypeable :: (Fingerprint, Any, Any) -> WrapTypeable f toWrapTypeable (_, an, k) = wrapTypeable (unsafeCoerce k) (fromAny an) calcFp :: forall a . Typeable a => Fingerprint calcFp = typeRepFingerprint $ typeRep @a fromTriples :: [(Fingerprint, Any, Any)] -> TypeRepMap f fromTriples kvs = TypeRepMap (GHC.fromList fpAs) (GHC.fromList fpBs) (GHC.fromList ans) (GHC.fromList ks) where (fpAs, fpBs) = unzip $ map (\(Fingerprint a b) -> (a, b)) fps (fps, ans, ks) = unzip3 $ fromSortedList $ sortWith fst3 $ nubByFst kvs ---------------------------------------------------------------------------- -- Tree-like conversion ---------------------------------------------------------------------------- fromSortedList :: forall a . [a] -> [a] fromSortedList l = runST $ do let n = length l let arrOrigin = fromListN n l arrResult <- thawArray arrOrigin 0 n go n arrResult arrOrigin toList <$> unsafeFreezeArray arrResult where -- state monad could be used here, but it's another dependency go :: forall s . Int -> MutableArray s a -> Array a -> ST s () go len result origin = () <$ loop 0 0 where loop :: Int -> Int -> ST s Int loop i first = if i >= len then pure first else do newFirst <- loop (2 * i + 1) first writeArray result i (indexArray origin newFirst) loop (2 * i + 2) (newFirst + 1)