{-# LANGUAGE BangPatterns, CPP, MagicHash, Rank2Types, UnboxedTuples #-} {-# OPTIONS_GHC -fno-full-laziness -funbox-strict-fields #-} -- | Zero based arrays. -- -- Note that no bounds checking are performed. module Data.HashMap.Array ( Array , MArray -- * Creation , new , new_ , singleton , singletonM , pair -- * Basic interface , length , lengthM , read , write , index , indexM , update , updateWith' , unsafeUpdateM , insert , insertM , delete , unsafeFreeze , unsafeThaw , run , run2 , copy , copyM -- * Folds , foldl' , foldr , thaw , map , map' , traverse , filter , toList ) where import qualified Data.Traversable as Traversable #if __GLASGOW_HASKELL__ < 709 import Control.Applicative (Applicative) #endif import Control.DeepSeq import GHC.Exts(Int(..)) import GHC.ST (ST(..)) #if __GLASGOW_HASKELL__ >= 709 import Prelude hiding (filter, foldr, length, map, read, traverse) #else import Prelude hiding (filter, foldr, length, map, read) #endif #if __GLASGOW_HASKELL__ >= 710 import GHC.Exts (SmallArray#, newSmallArray#, readSmallArray#, writeSmallArray#, indexSmallArray#, unsafeFreezeSmallArray#, unsafeThawSmallArray#, SmallMutableArray#, sizeofSmallArray#, copySmallArray#, thawSmallArray#, sizeofSmallMutableArray#, copySmallMutableArray#) #else import GHC.Exts (Array#, newArray#, readArray#, writeArray#, indexArray#, unsafeFreezeArray#, unsafeThawArray#, MutableArray#, sizeofArray#, copyArray#, thawArray#, sizeofMutableArray#, copyMutableArray#) #endif #if defined(ASSERTS) import qualified Prelude #endif import Data.HashMap.Unsafe (runST) #if __GLASGOW_HASKELL__ >= 710 type Array# a = SmallArray# a type MutableArray# a = SmallMutableArray# a newArray# = newSmallArray# readArray# = readSmallArray# writeArray# = writeSmallArray# indexArray# = indexSmallArray# unsafeFreezeArray# = unsafeFreezeSmallArray# unsafeThawArray# = unsafeThawSmallArray# sizeofArray# = sizeofSmallArray# copyArray# = copySmallArray# thawArray# = thawSmallArray# sizeofMutableArray# = sizeofSmallMutableArray# copyMutableArray# = copySmallMutableArray# #endif ------------------------------------------------------------------------ #if defined(ASSERTS) -- This fugly hack is brought by GHC's apparent reluctance to deal -- with MagicHash and UnboxedTuples when inferring types. Eek! # define CHECK_BOUNDS(_func_,_len_,_k_) \ if (_k_) < 0 || (_k_) >= (_len_) then error ("Data.HashMap.Array." ++ (_func_) ++ ": bounds error, offset " ++ show (_k_) ++ ", length " ++ show (_len_)) else # define CHECK_OP(_func_,_op_,_lhs_,_rhs_) \ if not ((_lhs_) _op_ (_rhs_)) then error ("Data.HashMap.Array." ++ (_func_) ++ ": Check failed: _lhs_ _op_ _rhs_ (" ++ show (_lhs_) ++ " vs. " ++ show (_rhs_) ++ ")") else # define CHECK_GT(_func_,_lhs_,_rhs_) CHECK_OP(_func_,>,_lhs_,_rhs_) # define CHECK_LE(_func_,_lhs_,_rhs_) CHECK_OP(_func_,<=,_lhs_,_rhs_) # define CHECK_EQ(_func_,_lhs_,_rhs_) CHECK_OP(_func_,==,_lhs_,_rhs_) #else # define CHECK_BOUNDS(_func_,_len_,_k_) # define CHECK_OP(_func_,_op_,_lhs_,_rhs_) # define CHECK_GT(_func_,_lhs_,_rhs_) # define CHECK_LE(_func_,_lhs_,_rhs_) # define CHECK_EQ(_func_,_lhs_,_rhs_) #endif data Array a = Array { unArray :: !(Array# a) } instance Show a => Show (Array a) where show = show . toList length :: Array a -> Int length ary = I# (sizeofArray# (unArray ary)) {-# INLINE length #-} -- | Smart constructor array :: Array# a -> Int -> Array a array ary _n = Array ary {-# INLINE array #-} data MArray s a = MArray { unMArray :: !(MutableArray# s a) } lengthM :: MArray s a -> Int lengthM mary = I# (sizeofMutableArray# (unMArray mary)) {-# INLINE lengthM #-} -- | Smart constructor marray :: MutableArray# s a -> Int -> MArray s a marray mary _n = MArray mary {-# INLINE marray #-} ------------------------------------------------------------------------ instance NFData a => NFData (Array a) where rnf = rnfArray rnfArray :: NFData a => Array a -> () rnfArray ary0 = go ary0 n0 0 where n0 = length ary0 go !ary !n !i | i >= n = () | otherwise = rnf (index ary i) `seq` go ary n (i+1) {-# INLINE rnfArray #-} -- | Create a new mutable array of specified size, in the specified -- state thread, with each element containing the specified initial -- value. new :: Int -> a -> ST s (MArray s a) new n@(I# n#) b = CHECK_GT("new",n,(0 :: Int)) ST $ \s -> case newArray# n# b s of (# s', ary #) -> (# s', marray ary n #) {-# INLINE new #-} new_ :: Int -> ST s (MArray s a) new_ n = new n undefinedElem singleton :: a -> Array a singleton x = runST (singletonM x) {-# INLINE singleton #-} singletonM :: a -> ST s (Array a) singletonM x = new 1 x >>= unsafeFreeze {-# INLINE singletonM #-} pair :: a -> a -> Array a pair x y = run $ do ary <- new 2 x write ary 1 y return ary {-# INLINE pair #-} read :: MArray s a -> Int -> ST s a read ary _i@(I# i#) = ST $ \ s -> CHECK_BOUNDS("read", lengthM ary, _i) readArray# (unMArray ary) i# s {-# INLINE read #-} write :: MArray s a -> Int -> a -> ST s () write ary _i@(I# i#) b = ST $ \ s -> CHECK_BOUNDS("write", lengthM ary, _i) case writeArray# (unMArray ary) i# b s of s' -> (# s' , () #) {-# INLINE write #-} index :: Array a -> Int -> a index ary _i@(I# i#) = CHECK_BOUNDS("index", length ary, _i) case indexArray# (unArray ary) i# of (# b #) -> b {-# INLINE index #-} indexM :: Array a -> Int -> ST s a indexM ary _i@(I# i#) = CHECK_BOUNDS("indexM", length ary, _i) case indexArray# (unArray ary) i# of (# b #) -> return b {-# INLINE indexM #-} unsafeFreeze :: MArray s a -> ST s (Array a) unsafeFreeze mary = ST $ \s -> case unsafeFreezeArray# (unMArray mary) s of (# s', ary #) -> (# s', array ary (lengthM mary) #) {-# INLINE unsafeFreeze #-} unsafeThaw :: Array a -> ST s (MArray s a) unsafeThaw ary = ST $ \s -> case unsafeThawArray# (unArray ary) s of (# s', mary #) -> (# s', marray mary (length ary) #) {-# INLINE unsafeThaw #-} run :: (forall s . ST s (MArray s e)) -> Array e run act = runST $ act >>= unsafeFreeze {-# INLINE run #-} run2 :: (forall s. ST s (MArray s e, a)) -> (Array e, a) run2 k = runST (do (marr,b) <- k arr <- unsafeFreeze marr return (arr,b)) -- | Unsafely copy the elements of an array. Array bounds are not checked. copy :: Array e -> Int -> MArray s e -> Int -> Int -> ST s () copy !src !_sidx@(I# sidx#) !dst !_didx@(I# didx#) _n@(I# n#) = CHECK_LE("copy", _sidx + _n, length src) CHECK_LE("copy", _didx + _n, lengthM dst) ST $ \ s# -> case copyArray# (unArray src) sidx# (unMArray dst) didx# n# s# of s2 -> (# s2, () #) -- | Unsafely copy the elements of an array. Array bounds are not checked. copyM :: MArray s e -> Int -> MArray s e -> Int -> Int -> ST s () copyM !src !_sidx@(I# sidx#) !dst !_didx@(I# didx#) _n@(I# n#) = CHECK_BOUNDS("copyM: src", lengthM src, _sidx + _n - 1) CHECK_BOUNDS("copyM: dst", lengthM dst, _didx + _n - 1) ST $ \ s# -> case copyMutableArray# (unMArray src) sidx# (unMArray dst) didx# n# s# of s2 -> (# s2, () #) -- | /O(n)/ Insert an element at the given position in this array, -- increasing its size by one. insert :: Array e -> Int -> e -> Array e insert ary idx b = runST (insertM ary idx b) {-# INLINE insert #-} -- | /O(n)/ Insert an element at the given position in this array, -- increasing its size by one. insertM :: Array e -> Int -> e -> ST s (Array e) insertM ary idx b = CHECK_BOUNDS("insertM", count + 1, idx) do mary <- new_ (count+1) copy ary 0 mary 0 idx write mary idx b copy ary idx mary (idx+1) (count-idx) unsafeFreeze mary where !count = length ary {-# INLINE insertM #-} -- | /O(n)/ Update the element at the given position in this array. update :: Array e -> Int -> e -> Array e update ary idx b = runST (updateM ary idx b) {-# INLINE update #-} -- | /O(n)/ Update the element at the given position in this array. updateM :: Array e -> Int -> e -> ST s (Array e) updateM ary idx b = CHECK_BOUNDS("updateM", count, idx) do mary <- thaw ary 0 count write mary idx b unsafeFreeze mary where !count = length ary {-# INLINE updateM #-} -- | /O(n)/ Update the element at the given positio in this array, by -- applying a function to it. Evaluates the element to WHNF before -- inserting it into the array. updateWith' :: Array e -> Int -> (e -> e) -> Array e updateWith' ary idx f = update ary idx $! f (index ary idx) {-# INLINE updateWith' #-} -- | /O(1)/ Update the element at the given position in this array, -- without copying. unsafeUpdateM :: Array e -> Int -> e -> ST s () unsafeUpdateM ary idx b = CHECK_BOUNDS("unsafeUpdateM", length ary, idx) do mary <- unsafeThaw ary write mary idx b _ <- unsafeFreeze mary return () {-# INLINE unsafeUpdateM #-} foldl' :: (b -> a -> b) -> b -> Array a -> b foldl' f = \ z0 ary0 -> go ary0 (length ary0) 0 z0 where go ary n i !z | i >= n = z | otherwise = go ary n (i+1) (f z (index ary i)) {-# INLINE foldl' #-} foldr :: (a -> b -> b) -> b -> Array a -> b foldr f = \ z0 ary0 -> go ary0 (length ary0) 0 z0 where go ary n i z | i >= n = z | otherwise = f (index ary i) (go ary n (i+1) z) {-# INLINE foldr #-} undefinedElem :: a undefinedElem = error "Data.HashMap.Array: Undefined element" {-# NOINLINE undefinedElem #-} thaw :: Array e -> Int -> Int -> ST s (MArray s e) thaw !ary !_o@(I# o#) !n@(I# n#) = CHECK_LE("thaw", _o + n, length ary) ST $ \ s -> case thawArray# (unArray ary) o# n# s of (# s2, mary# #) -> (# s2, marray mary# n #) {-# INLINE thaw #-} -- | /O(n)/ Delete an element at the given position in this array, -- decreasing its size by one. delete :: Array e -> Int -> Array e delete ary idx = runST (deleteM ary idx) {-# INLINE delete #-} -- | /O(n)/ Delete an element at the given position in this array, -- decreasing its size by one. deleteM :: Array e -> Int -> ST s (Array e) deleteM ary idx = do CHECK_BOUNDS("deleteM", count, idx) do mary <- new_ (count-1) copy ary 0 mary 0 idx copy ary (idx+1) mary idx (count-(idx+1)) unsafeFreeze mary where !count = length ary {-# INLINE deleteM #-} map :: (a -> b) -> Array a -> Array b map f = \ ary -> let !n = length ary in run $ do mary <- new_ n go ary mary 0 n where go ary mary i n | i >= n = return mary | otherwise = do write mary i $ f (index ary i) go ary mary (i+1) n {-# INLINE map #-} -- | Strict version of 'map'. map' :: (a -> b) -> Array a -> Array b map' f = \ ary -> let !n = length ary in run $ do mary <- new_ n go ary mary 0 n where go ary mary i n | i >= n = return mary | otherwise = do write mary i $! f (index ary i) go ary mary (i+1) n {-# INLINE map' #-} fromList :: Int -> [a] -> Array a fromList n xs0 = CHECK_EQ("fromList", n, Prelude.length xs0) run $ do mary <- new_ n go xs0 mary 0 where go [] !mary !_ = return mary go (x:xs) mary i = do write mary i x go xs mary (i+1) toList :: Array a -> [a] toList = foldr (:) [] traverse :: Applicative f => (a -> f b) -> Array a -> f (Array b) traverse f = \ ary -> fromList (length ary) `fmap` Traversable.traverse f (toList ary) {-# INLINE traverse #-} filter :: (a -> Bool) -> Array a -> Array a filter p = \ ary -> let !n = length ary in run $ do mary <- new_ n go ary mary 0 0 n where go ary mary i j n | i >= n = if i == j then return mary else do mary2 <- new_ j copyM mary 0 mary2 0 j return mary2 | p el = write mary j el >> go ary mary (i+1) (j+1) n | otherwise = go ary mary (i+1) j n where el = index ary i {-# INLINE filter #-}