module Text.ParserCombinators.UU.Core 
  ( 
    IsParser,
    ExtAlternative (..),
    Eof (..),
    IsLocationUpdatedBy (..),
    StoresErrors (..),
    HasPosition (..),
    
    
    P (),
    
    Steps (..),
    Cost,
    Progress,
    
    Nat (..),
    Strings,
    
    
    micro,
    amb,
    pErrors,
    pPos,
    pEnd,
    pSwitch,
    pSymExt,
    
    parse, parse_h,
    
    getZeroP,
    getOneP,
    
    eval,
    
    module Control.Applicative,
    module Control.Monad
  ) where
import Control.Applicative
import Control.Monad 
import Data.Char
import Debug.Trace
import Data.Maybe
class (Alternative p, Applicative p, ExtAlternative p) => IsParser p
instance  MonadPlus (P st) where
  mzero = empty
  mplus = (<|>) 
class (Alternative p) => ExtAlternative p where
   
   
   
   
   (<<|>)  :: p a -> p a -> p a
   
   
   
   
   (<?>)   :: p a -> String -> p a
   
   
   doNotInterpret :: p a -> p a
   doNotInterpret = id
   
   
   
   
   
   must_be_non_empty   :: String -> p a ->        c -> c
   
   
   
   
   
   must_be_non_empties :: String -> p a -> p b -> c -> c 
   
   
   
   
   opt     :: p a ->   a -> p a
   opt p v = must_be_non_empty "opt" p (p <<|> pure v)   
infix   2  <?>    
infixl  3  <<|>     
infixl  2 `opt`
class Eof state where
       eof          ::  state   -> Bool
       deleteAtEnd  ::  state   -> Maybe (Cost, state)
class Show loc => loc `IsLocationUpdatedBy` str where
    advance :: loc 
            -> str 
            -> loc
class state `StoresErrors`  error | state -> error where
  
  
  getErrors :: state -> ([error], state)
class state `HasPosition`  pos | state -> pos where
  
  
  getPos  ::  state -> pos
data T st a  = T  (forall r . (a  -> st -> Steps r)  -> st -> Steps       r  )  
                  (forall r . (      st -> Steps r)  -> st -> Steps   (a, r) )  
                  (forall r . (      st -> Steps r)  -> st -> Steps       r  )  
instance Functor (T st) where
  fmap f (T ph pf pr) = T  ( \  k -> ph ( k .f ))
                           ( \  k ->  apply2fst f . pf k) 
                           pr
  f <$ (T _ _ pr)     = T  ( pr . ($f)) 
                           ( \ k st -> push f ( pr k st)) 
                           pr
instance   Applicative (T  state) where
  T ph pf pr  <*> ~(T qh qf qr)  =  T ( \  k -> ph (\ pr -> qh (\ qr -> k (pr qr))))
                                      ((apply .) . (pf .qf))
                                      ( pr . qr)
  T ph pf pr  <*  ~(T _  _  qr)   = T ( ph. (qr.))  (pf. qr)   (pr . qr)
  T _  _  pr  *>  ~(T qh qf qr )  = T ( pr . qh  )  (pr. qf)    (pr . qr)            
  pure a                          = T ($a) ((push a).) id 
instance   Alternative (T  state) where 
  T ph pf pr  <|> T qh qf qr  =   T (\  k inp  -> ph k inp `best` qh k inp)
                                    (\  k inp  -> pf k inp `best` qf k inp)
                                    (\  k inp  -> pr k inp `best` qr k inp)
  empty                =  T  ( \  k inp  ->  noAlts) ( \  k inp  ->  noAlts) ( \  k inp  ->  noAlts)
data  P   st  a =  P  (T  st a)         
                      (Maybe (T st a))  
                      Nat               
                      (Maybe a)         
instance Show (P st a) where
  show (P _ nt n e) = "P _ " ++ maybe "Nothing" (const "(Just _)") nt ++ " (" ++ show n ++ ") " ++ maybe "Nothing" (const "(Just _)") e
getOneP :: P a b -> Maybe (P a b)
getOneP (P _ Nothing   l                  _  )  =  Nothing
getOneP (P _ onep      l                  ep )  =  Just( mkParser onep Nothing (getLength l))
getZeroP :: P t a -> Maybe a
getZeroP (P _ _ _ z)  =  z
mkParser :: Maybe (T st a) -> Maybe a -> Nat -> P st a
mkParser np ne  l  =  P (mkParser'  np ne)  np l ne
  where  mkParser' np@(Just nt)  ne@Nothing    =  nt               
         mkParser' np@Nothing    ne@(Just a)   =  pure a       
         mkParser' np@(Just nt)  ne@(Just a)   =  nt <|> pure a
         mkParser' np@(Nothing)  ne@(Nothing)  =  empty
combine :: (Alternative f) => Maybe t1 -> Maybe t2 -> t -> Maybe t3
        -> (t1 -> t -> f a) -> (t2 -> t3 -> f a) -> Maybe (f a)
combine Nothing   Nothing  _  _     _   _   = Nothing      
combine (Just p)  Nothing  aq _     op1 op2 = Just (p `op1` aq) 
combine (Just p)  (Just v) aq nq    op1 op2 = case nq of
                                              Just nnq -> Just (p `op1` aq <|> v `op2` nnq)
                                              Nothing  -> Just (p `op1` aq                ) 
combine Nothing   (Just v) _  nq    _   op2 = case nq of
                                              Just nnq -> Just (v `op2` nnq)  
                                              Nothing  -> Nothing             
instance   Functor (P  state) where 
  fmap f   (P  ap np l me)   =  mkParser (fmap (fmap f)  np)  (f <$> me)  l 
  f <$     (P  ap np l me)   =  mkParser (fmap (f <$)    np)  (f <$  me)  l 
instance   Applicative (P  state) where
  P ap np  pl pe <*> ~(P aq nq  ql qe)  = mkParser (combine np pe aq nq (<*>) (<$>))       (pe <*> qe)  (nat_add pl ql) 
  P ap np pl pe  <*  ~(P aq nq  ql qe)  = mkParser (combine np pe aq nq (<*)  (<$))        (pe <* qe )  (nat_add pl ql)
  P ap np pl pe  *>  ~(P aq nq  ql qe)  = mkParser (combine np pe aq nq (*>) (flip const)) (pe *> qe )  (nat_add pl ql) 
  pure a                                = mkParser Nothing                                 (Just a   )  (Zero Infinite)
instance Alternative (P   state) where 
  P ap np  pl pe <|> P aq nq ql qe 
    =  let (rl, b) = trace' "calling natMin from <|>" (nat_min pl ql 0)
           Nothing `alt` q  = q
           p       `alt` Nothing = p
           Just p  `alt` Just q  = Just (p <|>q)
       in  mkParser ((if b then  id  else flip) alt np nq) (pe <|> qe) rl
  empty  = mkParser empty empty  Infinite 
instance ExtAlternative (P st) where
  P ap np pl pe <<|> P aq nq ql qe 
    = let (rl, b) = nat_min pl ql 0
          bestx :: Steps a -> Steps a -> Steps a
          bestx = (if b then id else flip) best
          choose:: T st a -> T st a -> T st a
          choose  (T ph pf pr)  (T qh qf qr) 
             = T  (\ k st -> let left  = norm (ph k st)
                             in if has_success left then left else left `bestx` qh k st)
                  (\ k st -> let left  = norm (pf k st)
                             in if has_success left then left else left `bestx` qf k st) 
                  (\ k st -> let left  = norm (pr k st)
                             in if has_success left then left else left  `bestx` qr k st)
      in   P (choose  ap aq )
             (maybe np (\nqq -> maybe nq (\npp -> return( choose  npp nqq)) np) nq)
             rl
             (pe <|> qe) 
  P  _  np  pl pe <?> label = let replaceExpected :: Steps a -> Steps a
                                  replaceExpected (Fail _ c) = (Fail [label] c)
                                  replaceExpected others     = others
                                  nnp = case np of Nothing -> Nothing
                                                   Just ((T ph pf  pr)) -> Just(T ( \ k inp -> replaceExpected (norm  ( ph k inp)))
                                                                                  ( \ k inp -> replaceExpected (norm  ( pf k inp)))
                                                                                  ( \ k inp -> replaceExpected (norm  ( pr k inp))))
                                in mkParser nnp pe pl
  
  doNotInterpret (P t nep _ e) = P t nep Unspecified e
  must_be_non_empty msg p@(P _ _ (Zero _)  _) _ 
            = error ("The combinator " ++ msg ++  " requires that it's argument cannot recognise the empty string\n")
  must_be_non_empty _ _      q  = q
  must_be_non_empties  msg (P _ _ (Zero _) _) (P _ _ (Zero _) _ ) _ 
            = error ("The combinator " ++ msg ++  " requires that not both arguments can recognise the empty string\n")
  must_be_non_empties  _ _ _ q  = q
instance IsParser (P st) 
instance  Monad (P st) where
       p@(P  ap np lp ep) >>=  a2q = 
          (P newap newnp (nat_add lp (error "cannot compute minimal length of right hand side of monadic parser")) newep)
          where (newep, newnp, newap) = case ep of
                                 Nothing -> (Nothing, t, maybe empty id t) 
                                 Just a  -> let  P aq nq lq eq = a2q a 
                                            in  (eq, combine t nq , t `alt` aq)
                Nothing  `alt` q    = q
                Just p   `alt` q    = p <|> q
                t = fmap (\  (T h _ _  ) ->      (T  (  \k -> h (\ a -> unParser_h (a2q a) k))
                                                     (  \k -> h (\ a -> unParser_f (a2q a) k))
                                                     (  \k -> h (\ a -> unParser_r (a2q a) k))) ) np
                combine Nothing     Nothing     = Nothing
                combine l@(Just _ ) Nothing     =  l
                combine Nothing     r@(Just _ ) =  r
                combine (Just l)    (Just r)    = Just (l <|> r)
                
                unParser_h :: P b a -> (a -> b -> Steps r) -> b -> Steps r
                unParser_h (P (T  h   _  _ ) _ _ _ )  =  h
                
                unParser_f :: P b a -> (b -> Steps r) -> b -> Steps (a, r)
                unParser_f (P (T  _   f  _ ) _ _ _ )  =  f
                
                unParser_r :: P b a -> (b -> Steps r) -> b -> Steps r
                unParser_r (P (T  _   _  r ) _ _ _ )  =  r
       return  = pure 
pSymExt ::  (forall a. (token -> state  -> Steps a) -> state -> Steps a) -> Nat -> Maybe token -> P state token
pSymExt splitState l e   = mkParser (Just t)  e l
                 where t = T (        splitState                       )
                             ( \ k -> splitState  (\ t -> push t . k)  )
                             ( \ k -> splitState  (\ _ -> k )          )
micro :: P state a -> Int -> P state a
P _  np  pl pe `micro` i  
  = let nnp = fmap (\ (T ph pf  pr) -> (T ( \ k st -> ph (\ a st -> Micro i (k a st)) st)
                                          ( \ k st -> pf (Micro i .k) st)
                                          ( \ k st -> pr (Micro i .k) st))) np
    in mkParser nnp pe pl
amb :: P st a -> P st [a]
amb (P _  np  pl pe) 
 = let  combinevalues  :: Steps [(a,r)] -> Steps ([a],r)
        combinevalues lar  =   Apply (\ lar -> (map fst lar, snd (head lar))) lar
        nnp = case np of
              Nothing -> Nothing
              Just ((T ph pf  pr)) -> Just(T ( \k     ->  removeEnd_h . ph (\ a st' -> End_h ([a], \ as -> k as st') noAlts))
                                             ( \k inp ->  combinevalues . removeEnd_f $ pf (\st -> End_f [k st] noAlts) inp)
                                             ( \k     ->  removeEnd_h . pr (\ st' -> End_h ([undefined], \ _ -> k  st') noAlts)))
        nep = (fmap pure pe)
    in  mkParser nnp nep pl
pErrors :: StoresErrors st error => P st [error]
pErrors = let nnp = Just (T ( \ k inp -> let (errs, inp') = getErrors inp in k    errs    inp' )
                            ( \ k inp -> let (errs, inp') = getErrors inp in push errs (k inp'))
                            ( \ k inp -> let (errs, inp') = getErrors inp in            k inp' ))
              nep =  (Just (error "pErrors cannot occur in lhs of bind"))  
          in mkParser nnp  Nothing (Zero Infinite)
pPos :: HasPosition st pos => P st pos
pPos =  let nnp = Just ( T ( \ k inp -> let pos = getPos inp in k    pos    inp )
                           ( \ k inp -> let pos = getPos inp in push pos (k inp))
                           ( \ k inp ->                                   k inp ))
            nep =  Just (error "pPos cannot occur in lhs of bind")  
        in mkParser nnp Nothing (Zero Infinite)
pState :: P st st
pState =   let nnp = Just ( T ( \ k inp -> k inp inp)
                          ( \ k inp -> push inp (k inp))
                          ($))
           in mkParser nnp Nothing  (Zero Infinite) 
pEnd    :: (StoresErrors st error, Eof st) => P st [error]
pEnd    = let nnp = Just ( T ( \ k inp ->   let deleterest inp =  case deleteAtEnd inp of
                                                  Nothing -> let (finalerrors, finalstate) = getErrors inp
                                                             in k  finalerrors finalstate
                                                  Just (i, inp') -> Fail []  [const (i,  deleterest inp')]
                                            in deleterest inp)
                             ( \ k   inp -> let deleterest inp =  case deleteAtEnd inp of
                                                  Nothing -> let (finalerrors, finalstate) = getErrors inp
                                                             in push finalerrors (k finalstate)
                                                  Just (i, inp') -> Fail [] [const ((i, deleterest inp'))]
                                            in deleterest inp)
                             ( \ k   inp -> let deleterest inp =  case deleteAtEnd inp of
                                                  Nothing -> let (finalerrors, finalstate) = getErrors inp
                                                             in  (k finalstate)
                                                  Just (i, inp') -> Fail [] [const (i, deleterest inp')]
                                            in deleterest inp))
         in mkParser nnp  Nothing (Zero Infinite)
           
pSwitch :: (st1 -> (st2, st2 -> st1)) -> P st2 a -> P st1 a 
pSwitch split (P _ np pl pe)    
   = let nnp = fmap (\ (T ph pf pr) ->T (\ k st1 ->  let (st2, back) = split st1
                                                     in ph (\ a st2' -> k a (back st2')) st2)
                                        (\ k st1 ->  let (st2, back) = split st1
                                                     in pf (\st2' -> k (back st2')) st2)
                                        (\ k st1 ->  let (st2, back) = split st1
                                                     in pr (\st2' -> k (back st2')) st2)) np
     in mkParser nnp pe pl
parse :: (Eof t) => P t a -> t -> a
parse   (P (T _  pf _) _ _ _)  = fst . eval . pf  (\ rest   -> if eof rest then  Step 0 ( Step 0 (Step 0 (Step 0 (Step 0 (error "ambiguous parser?"))))) 
                                                               else error "pEnd missing?")
parse_h :: (Eof t) => P t a -> t -> a
parse_h (P (T ph _  _) _ _ _)  = fst . eval . ph  (\ a rest -> if eof rest then push a (Step 0 (Step 0 (Step 0 (Step 0 (Step 0 (error "ambiguous parser?"))))) )
                                                                           else error "pEnd missing?") 
data  Steps   a  where
      Step   ::                 Progress       ->  Steps a                             -> Steps   a
      Apply  ::  forall a b.    (b -> a)       ->  Steps   b                           -> Steps   a
      Fail   ::                 Strings        ->  [Strings   ->  (Cost , Steps   a)]  -> Steps   a
      Micro   ::                Int            ->  Steps a                             -> Steps   a
      End_h  ::                 ([a] , [a]     ->  Steps r)    ->  Steps   (a,r)       -> Steps   (a, r)
      End_f  ::                 [Steps   a]    ->  Steps   a                           -> Steps   a
type Cost     = Int
type Progress = Int
type Strings  = [String]
apply       :: Steps (b -> a, (b, r)) -> Steps (a, r)
apply       =  Apply (\(b2a, br) -> let (b, r) = br in (b2a b, r)) 
push        :: v -> Steps   r -> Steps   (v, r)
push v      =  Apply (\ r -> (v, r))
apply2fst   :: (b -> a) -> Steps (b, r) -> Steps (a, r)
apply2fst f = Apply (\ (b, r) -> (f b, r)) 
succeedAlways :: Steps a
succeedAlways = let steps = Step 0 steps in steps
failAlways :: Steps a
failAlways  =  Fail [] [const (0, failAlways)]
noAlts :: Steps a
noAlts      =  Fail [] []
has_success :: Steps t -> Bool
has_success (Step _ _) = True
has_success _        = False 
eval :: Steps   a      ->  a
eval (Step  n    l)     =    (eval l)
eval (Micro  _    l)    =   eval l
eval (Fail   ss  ls  )  =   trace' ("expecting: " ++ show ss) (eval (getCheapest 5 (map ($ss) ls))) 
eval (Apply  f   l   )  =   f (eval l)
eval (End_f   _  _   )  =   error "dangling End_f constructor"
eval (End_h   _  _   )  =   error "dangling End_h constructor"
norm ::  Steps a ->  Steps   a
norm     (Apply f (Step   p    l  ))   =   Step  p (Apply f l)
norm     (Apply f (Micro  c    l  ))   =   Micro c (Apply f l)
norm     (Apply f (Fail   ss   ls ))   =   Fail ss (applyFail (Apply f) ls)
norm     (Apply f (Apply  g    l  ))   =   norm (Apply (f.g) l)
norm     (Apply f (End_f  ss   l  ))   =   End_f (map (Apply f) ss) (Apply f l)
norm     (Apply f (End_h  _    _  ))   =   error "Apply before End_h"
norm     steps                         =   steps
applyFail :: (c -> d) -> [a -> (b, c)] -> [a -> (b, d)]
applyFail f  = map (\ g -> \ ex -> let (c, l) =  g ex in  (c, f l))
best :: Steps a -> Steps a -> Steps a
x `best` y =   norm x `best'` norm y
best' :: Steps   b -> Steps   b -> Steps   b
End_f  as  l            `best'`  End_f  bs r          =   End_f (as++bs)  (l `best` r)
End_f  as  l            `best'`  r                    =   End_f as        (l `best` r)
l                       `best'`  End_f  bs r          =   End_f bs        (l `best` r)
End_h  (as, k_h_st)  l  `best'`  End_h  (bs, _) r     =   End_h (as++bs, k_h_st)  (l `best` r)
End_h  as  l            `best'`  r                    =   End_h as (l `best` r)
l                       `best'`  End_h  bs r          =   End_h bs (l `best` r)
Fail  sl  ll     `best'`  Fail  sr rr     =   Fail (sl ++ sr) (ll++rr)
Fail  _   _      `best'`  r               =   r   
l                `best'`  Fail  _  _      =   l
Step  n   l      `best'`  Step  m  r
    | n == m                              =   Step n (l  `best` r)     
    | n < m                               =   Step n (l  `best`  Step (m  n)  r)
    | n > m                               =   Step m (Step (n  m)  l  `best` r)
ls@(Step _  _)    `best'`  Micro _ _        =  ls
Micro _    _      `best'`  rs@(Step  _ _)   =  rs
ls@(Micro i l)    `best'`  rs@(Micro j r)  
    | i == j                               =   Micro i (l `best` r)
    | i < j                                =   ls
    | i > j                                =   rs
l                       `best'`  r         =   error "missing alternative in best'" 
getCheapest :: Int -> [(Int, Steps a)] -> Steps a 
getCheapest _ [] = error "no correcting alternative found"
getCheapest n l  =  snd $  foldr (\(w,ll) btf@(c, l)
                               ->    if w < c   
                                     then let new = (traverse n ll w c) 
                                          in if new < c then (new, ll) else btf
                                     else btf 
                               )   (maxBound, error "getCheapest") l
traverse :: Int -> Steps a -> Int -> Int  -> Int 
traverse 0  _            v c  =  trace' ("traverse " ++ show' 0 v c ++ " choosing" ++ show v ++ "\n") v
traverse n (Step _   l)  v c  =  trace' ("traverse Step   " ++ show' n v c ++ "\n") (traverse (n   1 ) l (v  n) c)
traverse n (Micro x  l)  v c  =  trace' ("traverse Micro  " ++ show' n v c ++ "\n") (traverse n         l v c)
traverse n (Apply _  l)  v c  =  trace' ("traverse Apply  " ++ show n ++ "\n")      (traverse n         l  v      c)
traverse n (Fail m m2ls) v c  =  trace' ("traverse Fail   " ++ show m ++ show' n v c ++ "\n") 
                                 (foldr (\ (w,l) c' -> if v + w < c' then traverse (n   1 ) l (v+w) c'
                                                       else c') c (map ($m) m2ls)
                                 )
traverse n (End_h ((a, lf))    r)  v c =  traverse n (lf a `best` removeEnd_h r) v c
traverse n (End_f (l      :_)  r)  v c =  traverse n (l `best` r) v c
show' :: (Show a, Show b, Show c) => a -> b -> c -> String
show' n v c = "n: " ++ show n ++ " v: " ++ show v ++ " c: " ++ show c
removeEnd_h     :: Steps (a, r) -> Steps r
removeEnd_h (Fail  m ls             )  =   Fail m (applyFail removeEnd_h ls)
removeEnd_h (Step  ps l             )  =   Step  ps (removeEnd_h l)
removeEnd_h (Apply f l              )  =   error "not in history parsers"
removeEnd_h (Micro c l              )  =   Micro c (removeEnd_h l)
removeEnd_h (End_h  (as, k_st  ) r  )  =   k_st as `best` removeEnd_h r 
removeEnd_f      :: Steps r -> Steps [r]
removeEnd_f (Fail m ls)        =   Fail m (applyFail removeEnd_f ls)
removeEnd_f (Step ps l)        =   Step ps (removeEnd_f l)
removeEnd_f (Apply f l)        =   Apply (map' f) (removeEnd_f l) 
                                   where map' f ~(x:xs)  =  f x : map f xs
removeEnd_f (Micro c l      )  =   Micro c (removeEnd_f l)
removeEnd_f (End_f(s:ss) r)    =   Apply  (:(map  eval ss)) s 
                                                 `best`
                                          removeEnd_f r
data Nat = Zero  Nat 
         | Succ Nat
         | Infinite
         | Unspecified
         deriving  Show
getLength :: Nat -> Nat
getLength (Zero  l)    = l
getLength l            = l
nat_min :: Nat -> Nat -> Int -> ( Nat  
                                , Bool 
                                ) 
nat_min (Zero l)   (Zero r)      n  = trace' "Both Zero in nat_min\n" (Zero (trace' "Should not be called unless merging?" (fst(nat_min l r (n+1)))), False) 
nat_min l          rr@(Zero r)   n  = trace' "Right Zero in nat_min\n"  (let (m,_) = nat_min l r (n+1)
                                                                         in (Zero m, True))
nat_min ll@(Zero l)   r          n  = trace' "Left Zero in nat_min\n"   (let (m,_) = nat_min l r (n+1)
                                                                         in (Zero m, False))
nat_min (Succ ll)  (Succ rr)     n  = if n > 1000 then error "problem with comparing lengths" 
                                      else trace' ("Succ in nat_min " ++ show n ++ "\n")         
                                                  (let (v, b) = nat_min ll  rr (n+1) in (Succ v, b))
nat_min Infinite   r             _  = trace' "Left Infinite in nat_min\n"  (r, True) 
nat_min l          Infinite      _  = trace' "Right Infinite in nat_min\n" (l, False) 
nat_min  Unspecified r           _  = trace' "Left Unspecified in nat_min\n"(r, False) 
nat_min  l           Unspecified _  = trace' "Right Unspecified in nat_min\n"(l, False) 
nat_add :: Nat -> Nat -> Nat
nat_add Unspecified _ = trace' "Unspecified in add\n" Unspecified
nat_add Infinite    _ = trace' "Infinite in add\n" Infinite
nat_add (Zero _)    r = trace' "Zero in add\n"     r
nat_add (Succ l)    r = trace' "Succ in add\n"     (Succ (nat_add l r))
trace' :: String -> b -> b
trace' m v =   v