module AbstractSyntaxDump where
import Data.Set(Set)
import Data.Map(Map)
import Patterns (Pattern(..),Patterns)
import Expression (Expression(..))
import Macro --marcos
import CommonTypes
import ErrorMessages
import UU.Scanner.Position(Pos)
import CommonTypes (ConstructorIdent,Identifier)
import UU.Scanner.Position(Pos)
import HsToken
import Data.List
import qualified Data.Map as Map
import Pretty
import PPUtil
import AbstractSyntax
import TokenDef
import Control.Monad.Identity (Identity)
import qualified Control.Monad.Identity
data Inh_Child = Inh_Child { }
data Syn_Child = Syn_Child { pp_Syn_Child :: (PP_Doc) }
wrap_Child :: T_Child -> Inh_Child -> (Syn_Child )
wrap_Child (T_Child act) (Inh_Child ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Child_vIn1
(T_Child_vOut1 _lhsOpp) <- return (inv_Child_s2 sem arg)
return (Syn_Child _lhsOpp)
)
sem_Child :: Child -> T_Child
sem_Child ( Child name_ tp_ kind_ ) = sem_Child_Child name_ tp_ kind_
newtype T_Child = T_Child {
attach_T_Child :: Identity (T_Child_s2 )
}
newtype T_Child_s2 = C_Child_s2 {
inv_Child_s2 :: (T_Child_v1 )
}
data T_Child_s3 = C_Child_s3
type T_Child_v1 = (T_Child_vIn1 ) -> (T_Child_vOut1 )
data T_Child_vIn1 = T_Child_vIn1
data T_Child_vOut1 = T_Child_vOut1 (PP_Doc)
sem_Child_Child :: (Identifier) -> (Type) -> (ChildKind) -> T_Child
sem_Child_Child arg_name_ arg_tp_ arg_kind_ = T_Child (return st2) where
st2 = let
v1 :: T_Child_v1
v1 = \ (T_Child_vIn1 ) -> ( let
_lhsOpp :: PP_Doc
_lhsOpp = rule0 arg_kind_ arg_name_ arg_tp_
__result_ = T_Child_vOut1 _lhsOpp
in __result_ )
in C_Child_s2 v1
rule0 = \ kind_ name_ tp_ ->
ppNestInfo ["Child","Child"] [pp name_, ppShow tp_] [ppF "kind" $ ppShow kind_] []
data Inh_Children = Inh_Children { }
data Syn_Children = Syn_Children { pp_Syn_Children :: (PP_Doc), ppL_Syn_Children :: ([PP_Doc]) }
wrap_Children :: T_Children -> Inh_Children -> (Syn_Children )
wrap_Children (T_Children act) (Inh_Children ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Children_vIn4
(T_Children_vOut4 _lhsOpp _lhsOppL) <- return (inv_Children_s5 sem arg)
return (Syn_Children _lhsOpp _lhsOppL)
)
sem_Children :: Children -> T_Children
sem_Children list = Prelude.foldr sem_Children_Cons sem_Children_Nil (Prelude.map sem_Child list)
newtype T_Children = T_Children {
attach_T_Children :: Identity (T_Children_s5 )
}
newtype T_Children_s5 = C_Children_s5 {
inv_Children_s5 :: (T_Children_v4 )
}
data T_Children_s6 = C_Children_s6
type T_Children_v4 = (T_Children_vIn4 ) -> (T_Children_vOut4 )
data T_Children_vIn4 = T_Children_vIn4
data T_Children_vOut4 = T_Children_vOut4 (PP_Doc) ([PP_Doc])
sem_Children_Cons :: T_Child -> T_Children -> T_Children
sem_Children_Cons arg_hd_ arg_tl_ = T_Children (return st5) where
st5 = let
v4 :: T_Children_v4
v4 = \ (T_Children_vIn4 ) -> ( let
_hdX2 = Control.Monad.Identity.runIdentity (attach_T_Child (arg_hd_))
_tlX5 = Control.Monad.Identity.runIdentity (attach_T_Children (arg_tl_))
(T_Child_vOut1 _hdIpp) = inv_Child_s2 _hdX2 (T_Child_vIn1 )
(T_Children_vOut4 _tlIpp _tlIppL) = inv_Children_s5 _tlX5 (T_Children_vIn4 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule1 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule2 _hdIpp _tlIpp
__result_ = T_Children_vOut4 _lhsOpp _lhsOppL
in __result_ )
in C_Children_s5 v4
rule1 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule2 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
sem_Children_Nil :: T_Children
sem_Children_Nil = T_Children (return st5) where
st5 = let
v4 :: T_Children_v4
v4 = \ (T_Children_vIn4 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule3 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule4 ()
__result_ = T_Children_vOut4 _lhsOpp _lhsOppL
in __result_ )
in C_Children_s5 v4
rule3 = \ (_ :: ()) ->
[]
rule4 = \ (_ :: ()) ->
empty
data Inh_Expression = Inh_Expression { }
data Syn_Expression = Syn_Expression { pp_Syn_Expression :: (PP_Doc) }
wrap_Expression :: T_Expression -> Inh_Expression -> (Syn_Expression )
wrap_Expression (T_Expression act) (Inh_Expression ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Expression_vIn7
(T_Expression_vOut7 _lhsOpp) <- return (inv_Expression_s8 sem arg)
return (Syn_Expression _lhsOpp)
)
sem_Expression :: Expression -> T_Expression
sem_Expression ( Expression pos_ tks_ ) = sem_Expression_Expression pos_ tks_
newtype T_Expression = T_Expression {
attach_T_Expression :: Identity (T_Expression_s8 )
}
newtype T_Expression_s8 = C_Expression_s8 {
inv_Expression_s8 :: (T_Expression_v7 )
}
data T_Expression_s9 = C_Expression_s9
type T_Expression_v7 = (T_Expression_vIn7 ) -> (T_Expression_vOut7 )
data T_Expression_vIn7 = T_Expression_vIn7
data T_Expression_vOut7 = T_Expression_vOut7 (PP_Doc)
sem_Expression_Expression :: (Pos) -> ([HsToken]) -> T_Expression
sem_Expression_Expression arg_pos_ arg_tks_ = T_Expression (return st8) where
st8 = let
v7 :: T_Expression_v7
v7 = \ (T_Expression_vIn7 ) -> ( let
_lhsOpp :: PP_Doc
_lhsOpp = rule5 arg_pos_ arg_tks_
__result_ = T_Expression_vOut7 _lhsOpp
in __result_ )
in C_Expression_s8 v7
rule5 = \ pos_ tks_ ->
ppNestInfo ["Expression","Expression"] [ppShow pos_] [ppF "txt" $ vlist . showTokens . tokensToStrings $ tks_] []
data Inh_Grammar = Inh_Grammar { }
data Syn_Grammar = Syn_Grammar { pp_Syn_Grammar :: (PP_Doc) }
wrap_Grammar :: T_Grammar -> Inh_Grammar -> (Syn_Grammar )
wrap_Grammar (T_Grammar act) (Inh_Grammar ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Grammar_vIn10
(T_Grammar_vOut10 _lhsOpp) <- return (inv_Grammar_s11 sem arg)
return (Syn_Grammar _lhsOpp)
)
sem_Grammar :: Grammar -> T_Grammar
sem_Grammar ( Grammar typeSyns_ useMap_ derivings_ wrappers_ nonts_ pragmas_ manualAttrOrderMap_ paramMap_ contextMap_ quantMap_ uniqueMap_ augmentsMap_ aroundsMap_ mergeMap_ ) = sem_Grammar_Grammar typeSyns_ useMap_ derivings_ wrappers_ ( sem_Nonterminals nonts_ ) pragmas_ manualAttrOrderMap_ paramMap_ contextMap_ quantMap_ uniqueMap_ augmentsMap_ aroundsMap_ mergeMap_
newtype T_Grammar = T_Grammar {
attach_T_Grammar :: Identity (T_Grammar_s11 )
}
newtype T_Grammar_s11 = C_Grammar_s11 {
inv_Grammar_s11 :: (T_Grammar_v10 )
}
data T_Grammar_s12 = C_Grammar_s12
type T_Grammar_v10 = (T_Grammar_vIn10 ) -> (T_Grammar_vOut10 )
data T_Grammar_vIn10 = T_Grammar_vIn10
data T_Grammar_vOut10 = T_Grammar_vOut10 (PP_Doc)
sem_Grammar_Grammar :: (TypeSyns) -> (UseMap) -> (Derivings) -> (Set NontermIdent) -> T_Nonterminals -> (PragmaMap) -> (AttrOrderMap) -> (ParamMap) -> (ContextMap) -> (QuantMap) -> (UniqueMap) -> (Map NontermIdent (Map ConstructorIdent (Map Identifier [Expression]))) -> (Map NontermIdent (Map ConstructorIdent (Map Identifier [Expression]))) -> (Map NontermIdent (Map ConstructorIdent (Map Identifier (Identifier, [Identifier], Expression)))) -> T_Grammar
sem_Grammar_Grammar arg_typeSyns_ arg_useMap_ arg_derivings_ arg_wrappers_ arg_nonts_ _ _ _ _ _ _ _ _ _ = T_Grammar (return st11) where
st11 = let
v10 :: T_Grammar_v10
v10 = \ (T_Grammar_vIn10 ) -> ( let
_nontsX17 = Control.Monad.Identity.runIdentity (attach_T_Nonterminals (arg_nonts_))
(T_Nonterminals_vOut16 _nontsIpp _nontsIppL) = inv_Nonterminals_s17 _nontsX17 (T_Nonterminals_vIn16 )
_lhsOpp :: PP_Doc
_lhsOpp = rule6 _nontsIppL arg_derivings_ arg_typeSyns_ arg_useMap_ arg_wrappers_
__result_ = T_Grammar_vOut10 _lhsOpp
in __result_ )
in C_Grammar_s11 v10
rule6 = \ ((_nontsIppL) :: [PP_Doc]) derivings_ typeSyns_ useMap_ wrappers_ ->
ppNestInfo ["Grammar","Grammar"] []
[ ppF "typeSyns" $ ppAssocL typeSyns_
, ppF "useMap" $ ppMap $ Map.map ppMap $ useMap_
, ppF "derivings" $ ppMap $ derivings_
, ppF "wrappers" $ ppShow $ wrappers_
, ppF "nonts" $ ppVList _nontsIppL
] []
data Inh_Nonterminal = Inh_Nonterminal { }
data Syn_Nonterminal = Syn_Nonterminal { pp_Syn_Nonterminal :: (PP_Doc) }
wrap_Nonterminal :: T_Nonterminal -> Inh_Nonterminal -> (Syn_Nonterminal )
wrap_Nonterminal (T_Nonterminal act) (Inh_Nonterminal ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Nonterminal_vIn13
(T_Nonterminal_vOut13 _lhsOpp) <- return (inv_Nonterminal_s14 sem arg)
return (Syn_Nonterminal _lhsOpp)
)
sem_Nonterminal :: Nonterminal -> T_Nonterminal
sem_Nonterminal ( Nonterminal nt_ params_ inh_ syn_ prods_ ) = sem_Nonterminal_Nonterminal nt_ params_ inh_ syn_ ( sem_Productions prods_ )
newtype T_Nonterminal = T_Nonterminal {
attach_T_Nonterminal :: Identity (T_Nonterminal_s14 )
}
newtype T_Nonterminal_s14 = C_Nonterminal_s14 {
inv_Nonterminal_s14 :: (T_Nonterminal_v13 )
}
data T_Nonterminal_s15 = C_Nonterminal_s15
type T_Nonterminal_v13 = (T_Nonterminal_vIn13 ) -> (T_Nonterminal_vOut13 )
data T_Nonterminal_vIn13 = T_Nonterminal_vIn13
data T_Nonterminal_vOut13 = T_Nonterminal_vOut13 (PP_Doc)
sem_Nonterminal_Nonterminal :: (NontermIdent) -> ([Identifier]) -> (Attributes) -> (Attributes) -> T_Productions -> T_Nonterminal
sem_Nonterminal_Nonterminal arg_nt_ arg_params_ arg_inh_ arg_syn_ arg_prods_ = T_Nonterminal (return st14) where
st14 = let
v13 :: T_Nonterminal_v13
v13 = \ (T_Nonterminal_vIn13 ) -> ( let
_prodsX29 = Control.Monad.Identity.runIdentity (attach_T_Productions (arg_prods_))
(T_Productions_vOut28 _prodsIpp _prodsIppL) = inv_Productions_s29 _prodsX29 (T_Productions_vIn28 )
_lhsOpp :: PP_Doc
_lhsOpp = rule7 _prodsIppL arg_inh_ arg_nt_ arg_params_ arg_syn_
__result_ = T_Nonterminal_vOut13 _lhsOpp
in __result_ )
in C_Nonterminal_s14 v13
rule7 = \ ((_prodsIppL) :: [PP_Doc]) inh_ nt_ params_ syn_ ->
ppNestInfo ["Nonterminal","Nonterminal"] (pp nt_ : map pp params_) [ppF "inh" $ ppMap inh_, ppF "syn" $ ppMap syn_, ppF "prods" $ ppVList _prodsIppL] []
data Inh_Nonterminals = Inh_Nonterminals { }
data Syn_Nonterminals = Syn_Nonterminals { pp_Syn_Nonterminals :: (PP_Doc), ppL_Syn_Nonterminals :: ([PP_Doc]) }
wrap_Nonterminals :: T_Nonterminals -> Inh_Nonterminals -> (Syn_Nonterminals )
wrap_Nonterminals (T_Nonterminals act) (Inh_Nonterminals ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Nonterminals_vIn16
(T_Nonterminals_vOut16 _lhsOpp _lhsOppL) <- return (inv_Nonterminals_s17 sem arg)
return (Syn_Nonterminals _lhsOpp _lhsOppL)
)
sem_Nonterminals :: Nonterminals -> T_Nonterminals
sem_Nonterminals list = Prelude.foldr sem_Nonterminals_Cons sem_Nonterminals_Nil (Prelude.map sem_Nonterminal list)
newtype T_Nonterminals = T_Nonterminals {
attach_T_Nonterminals :: Identity (T_Nonterminals_s17 )
}
newtype T_Nonterminals_s17 = C_Nonterminals_s17 {
inv_Nonterminals_s17 :: (T_Nonterminals_v16 )
}
data T_Nonterminals_s18 = C_Nonterminals_s18
type T_Nonterminals_v16 = (T_Nonterminals_vIn16 ) -> (T_Nonterminals_vOut16 )
data T_Nonterminals_vIn16 = T_Nonterminals_vIn16
data T_Nonterminals_vOut16 = T_Nonterminals_vOut16 (PP_Doc) ([PP_Doc])
sem_Nonterminals_Cons :: T_Nonterminal -> T_Nonterminals -> T_Nonterminals
sem_Nonterminals_Cons arg_hd_ arg_tl_ = T_Nonterminals (return st17) where
st17 = let
v16 :: T_Nonterminals_v16
v16 = \ (T_Nonterminals_vIn16 ) -> ( let
_hdX14 = Control.Monad.Identity.runIdentity (attach_T_Nonterminal (arg_hd_))
_tlX17 = Control.Monad.Identity.runIdentity (attach_T_Nonterminals (arg_tl_))
(T_Nonterminal_vOut13 _hdIpp) = inv_Nonterminal_s14 _hdX14 (T_Nonterminal_vIn13 )
(T_Nonterminals_vOut16 _tlIpp _tlIppL) = inv_Nonterminals_s17 _tlX17 (T_Nonterminals_vIn16 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule8 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule9 _hdIpp _tlIpp
__result_ = T_Nonterminals_vOut16 _lhsOpp _lhsOppL
in __result_ )
in C_Nonterminals_s17 v16
rule8 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule9 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
sem_Nonterminals_Nil :: T_Nonterminals
sem_Nonterminals_Nil = T_Nonterminals (return st17) where
st17 = let
v16 :: T_Nonterminals_v16
v16 = \ (T_Nonterminals_vIn16 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule10 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule11 ()
__result_ = T_Nonterminals_vOut16 _lhsOpp _lhsOppL
in __result_ )
in C_Nonterminals_s17 v16
rule10 = \ (_ :: ()) ->
[]
rule11 = \ (_ :: ()) ->
empty
data Inh_Pattern = Inh_Pattern { }
data Syn_Pattern = Syn_Pattern { copy_Syn_Pattern :: (Pattern), pp_Syn_Pattern :: (PP_Doc) }
wrap_Pattern :: T_Pattern -> Inh_Pattern -> (Syn_Pattern )
wrap_Pattern (T_Pattern act) (Inh_Pattern ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Pattern_vIn19
(T_Pattern_vOut19 _lhsOcopy _lhsOpp) <- return (inv_Pattern_s20 sem arg)
return (Syn_Pattern _lhsOcopy _lhsOpp)
)
sem_Pattern :: Pattern -> T_Pattern
sem_Pattern ( Constr name_ pats_ ) = sem_Pattern_Constr name_ ( sem_Patterns pats_ )
sem_Pattern ( Product pos_ pats_ ) = sem_Pattern_Product pos_ ( sem_Patterns pats_ )
sem_Pattern ( Alias field_ attr_ pat_ ) = sem_Pattern_Alias field_ attr_ ( sem_Pattern pat_ )
sem_Pattern ( Irrefutable pat_ ) = sem_Pattern_Irrefutable ( sem_Pattern pat_ )
sem_Pattern ( Underscore pos_ ) = sem_Pattern_Underscore pos_
newtype T_Pattern = T_Pattern {
attach_T_Pattern :: Identity (T_Pattern_s20 )
}
newtype T_Pattern_s20 = C_Pattern_s20 {
inv_Pattern_s20 :: (T_Pattern_v19 )
}
data T_Pattern_s21 = C_Pattern_s21
type T_Pattern_v19 = (T_Pattern_vIn19 ) -> (T_Pattern_vOut19 )
data T_Pattern_vIn19 = T_Pattern_vIn19
data T_Pattern_vOut19 = T_Pattern_vOut19 (Pattern) (PP_Doc)
sem_Pattern_Constr :: (ConstructorIdent) -> T_Patterns -> T_Pattern
sem_Pattern_Constr arg_name_ arg_pats_ = T_Pattern (return st20) where
st20 = let
v19 :: T_Pattern_v19
v19 = \ (T_Pattern_vIn19 ) -> ( let
_patsX23 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_pats_))
(T_Patterns_vOut22 _patsIcopy _patsIpp _patsIppL) = inv_Patterns_s23 _patsX23 (T_Patterns_vIn22 )
_lhsOpp :: PP_Doc
_lhsOpp = rule12 _patsIppL arg_name_
_copy = rule13 _patsIcopy arg_name_
_lhsOcopy :: Pattern
_lhsOcopy = rule14 _copy
__result_ = T_Pattern_vOut19 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s20 v19
rule12 = \ ((_patsIppL) :: [PP_Doc]) name_ ->
ppNestInfo ["Pattern","Constr"] [pp name_] [ppF "pats" $ ppVList _patsIppL] []
rule13 = \ ((_patsIcopy) :: Patterns) name_ ->
Constr name_ _patsIcopy
rule14 = \ _copy ->
_copy
sem_Pattern_Product :: (Pos) -> T_Patterns -> T_Pattern
sem_Pattern_Product arg_pos_ arg_pats_ = T_Pattern (return st20) where
st20 = let
v19 :: T_Pattern_v19
v19 = \ (T_Pattern_vIn19 ) -> ( let
_patsX23 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_pats_))
(T_Patterns_vOut22 _patsIcopy _patsIpp _patsIppL) = inv_Patterns_s23 _patsX23 (T_Patterns_vIn22 )
_lhsOpp :: PP_Doc
_lhsOpp = rule15 _patsIppL arg_pos_
_copy = rule16 _patsIcopy arg_pos_
_lhsOcopy :: Pattern
_lhsOcopy = rule17 _copy
__result_ = T_Pattern_vOut19 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s20 v19
rule15 = \ ((_patsIppL) :: [PP_Doc]) pos_ ->
ppNestInfo ["Pattern","Product"] [ppShow pos_] [ppF "pats" $ ppVList _patsIppL] []
rule16 = \ ((_patsIcopy) :: Patterns) pos_ ->
Product pos_ _patsIcopy
rule17 = \ _copy ->
_copy
sem_Pattern_Alias :: (Identifier) -> (Identifier) -> T_Pattern -> T_Pattern
sem_Pattern_Alias arg_field_ arg_attr_ arg_pat_ = T_Pattern (return st20) where
st20 = let
v19 :: T_Pattern_v19
v19 = \ (T_Pattern_vIn19 ) -> ( let
_patX20 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pat_))
(T_Pattern_vOut19 _patIcopy _patIpp) = inv_Pattern_s20 _patX20 (T_Pattern_vIn19 )
_lhsOpp :: PP_Doc
_lhsOpp = rule18 _patIpp arg_attr_ arg_field_
_copy = rule19 _patIcopy arg_attr_ arg_field_
_lhsOcopy :: Pattern
_lhsOcopy = rule20 _copy
__result_ = T_Pattern_vOut19 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s20 v19
rule18 = \ ((_patIpp) :: PP_Doc) attr_ field_ ->
ppNestInfo ["Pattern","Alias"] [pp field_, pp attr_] [ppF "pat" $ _patIpp] []
rule19 = \ ((_patIcopy) :: Pattern) attr_ field_ ->
Alias field_ attr_ _patIcopy
rule20 = \ _copy ->
_copy
sem_Pattern_Irrefutable :: T_Pattern -> T_Pattern
sem_Pattern_Irrefutable arg_pat_ = T_Pattern (return st20) where
st20 = let
v19 :: T_Pattern_v19
v19 = \ (T_Pattern_vIn19 ) -> ( let
_patX20 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pat_))
(T_Pattern_vOut19 _patIcopy _patIpp) = inv_Pattern_s20 _patX20 (T_Pattern_vIn19 )
_lhsOpp :: PP_Doc
_lhsOpp = rule21 _patIpp
_copy = rule22 _patIcopy
_lhsOcopy :: Pattern
_lhsOcopy = rule23 _copy
__result_ = T_Pattern_vOut19 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s20 v19
rule21 = \ ((_patIpp) :: PP_Doc) ->
_patIpp
rule22 = \ ((_patIcopy) :: Pattern) ->
Irrefutable _patIcopy
rule23 = \ _copy ->
_copy
sem_Pattern_Underscore :: (Pos) -> T_Pattern
sem_Pattern_Underscore arg_pos_ = T_Pattern (return st20) where
st20 = let
v19 :: T_Pattern_v19
v19 = \ (T_Pattern_vIn19 ) -> ( let
_lhsOpp :: PP_Doc
_lhsOpp = rule24 arg_pos_
_copy = rule25 arg_pos_
_lhsOcopy :: Pattern
_lhsOcopy = rule26 _copy
__result_ = T_Pattern_vOut19 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s20 v19
rule24 = \ pos_ ->
ppNestInfo ["Pattern","Underscore"] [ppShow pos_] [] []
rule25 = \ pos_ ->
Underscore pos_
rule26 = \ _copy ->
_copy
data Inh_Patterns = Inh_Patterns { }
data Syn_Patterns = Syn_Patterns { copy_Syn_Patterns :: (Patterns), pp_Syn_Patterns :: (PP_Doc), ppL_Syn_Patterns :: ([PP_Doc]) }
wrap_Patterns :: T_Patterns -> Inh_Patterns -> (Syn_Patterns )
wrap_Patterns (T_Patterns act) (Inh_Patterns ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Patterns_vIn22
(T_Patterns_vOut22 _lhsOcopy _lhsOpp _lhsOppL) <- return (inv_Patterns_s23 sem arg)
return (Syn_Patterns _lhsOcopy _lhsOpp _lhsOppL)
)
sem_Patterns :: Patterns -> T_Patterns
sem_Patterns list = Prelude.foldr sem_Patterns_Cons sem_Patterns_Nil (Prelude.map sem_Pattern list)
newtype T_Patterns = T_Patterns {
attach_T_Patterns :: Identity (T_Patterns_s23 )
}
newtype T_Patterns_s23 = C_Patterns_s23 {
inv_Patterns_s23 :: (T_Patterns_v22 )
}
data T_Patterns_s24 = C_Patterns_s24
type T_Patterns_v22 = (T_Patterns_vIn22 ) -> (T_Patterns_vOut22 )
data T_Patterns_vIn22 = T_Patterns_vIn22
data T_Patterns_vOut22 = T_Patterns_vOut22 (Patterns) (PP_Doc) ([PP_Doc])
sem_Patterns_Cons :: T_Pattern -> T_Patterns -> T_Patterns
sem_Patterns_Cons arg_hd_ arg_tl_ = T_Patterns (return st23) where
st23 = let
v22 :: T_Patterns_v22
v22 = \ (T_Patterns_vIn22 ) -> ( let
_hdX20 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_hd_))
_tlX23 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_tl_))
(T_Pattern_vOut19 _hdIcopy _hdIpp) = inv_Pattern_s20 _hdX20 (T_Pattern_vIn19 )
(T_Patterns_vOut22 _tlIcopy _tlIpp _tlIppL) = inv_Patterns_s23 _tlX23 (T_Patterns_vIn22 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule27 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule28 _hdIpp _tlIpp
_copy = rule29 _hdIcopy _tlIcopy
_lhsOcopy :: Patterns
_lhsOcopy = rule30 _copy
__result_ = T_Patterns_vOut22 _lhsOcopy _lhsOpp _lhsOppL
in __result_ )
in C_Patterns_s23 v22
rule27 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule28 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
rule29 = \ ((_hdIcopy) :: Pattern) ((_tlIcopy) :: Patterns) ->
(:) _hdIcopy _tlIcopy
rule30 = \ _copy ->
_copy
sem_Patterns_Nil :: T_Patterns
sem_Patterns_Nil = T_Patterns (return st23) where
st23 = let
v22 :: T_Patterns_v22
v22 = \ (T_Patterns_vIn22 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule31 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule32 ()
_copy = rule33 ()
_lhsOcopy :: Patterns
_lhsOcopy = rule34 _copy
__result_ = T_Patterns_vOut22 _lhsOcopy _lhsOpp _lhsOppL
in __result_ )
in C_Patterns_s23 v22
rule31 = \ (_ :: ()) ->
[]
rule32 = \ (_ :: ()) ->
empty
rule33 = \ (_ :: ()) ->
[]
rule34 = \ _copy ->
_copy
data Inh_Production = Inh_Production { }
data Syn_Production = Syn_Production { pp_Syn_Production :: (PP_Doc) }
wrap_Production :: T_Production -> Inh_Production -> (Syn_Production )
wrap_Production (T_Production act) (Inh_Production ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Production_vIn25
(T_Production_vOut25 _lhsOpp) <- return (inv_Production_s26 sem arg)
return (Syn_Production _lhsOpp)
)
sem_Production :: Production -> T_Production
sem_Production ( Production con_ params_ constraints_ children_ rules_ typeSigs_ macro_ ) = sem_Production_Production con_ params_ constraints_ ( sem_Children children_ ) ( sem_Rules rules_ ) ( sem_TypeSigs typeSigs_ ) macro_
newtype T_Production = T_Production {
attach_T_Production :: Identity (T_Production_s26 )
}
newtype T_Production_s26 = C_Production_s26 {
inv_Production_s26 :: (T_Production_v25 )
}
data T_Production_s27 = C_Production_s27
type T_Production_v25 = (T_Production_vIn25 ) -> (T_Production_vOut25 )
data T_Production_vIn25 = T_Production_vIn25
data T_Production_vOut25 = T_Production_vOut25 (PP_Doc)
sem_Production_Production :: (ConstructorIdent) -> ([Identifier]) -> ([Type]) -> T_Children -> T_Rules -> T_TypeSigs -> (MaybeMacro) -> T_Production
sem_Production_Production arg_con_ _ _ arg_children_ arg_rules_ arg_typeSigs_ _ = T_Production (return st26) where
st26 = let
v25 :: T_Production_v25
v25 = \ (T_Production_vIn25 ) -> ( let
_childrenX5 = Control.Monad.Identity.runIdentity (attach_T_Children (arg_children_))
_rulesX35 = Control.Monad.Identity.runIdentity (attach_T_Rules (arg_rules_))
_typeSigsX41 = Control.Monad.Identity.runIdentity (attach_T_TypeSigs (arg_typeSigs_))
(T_Children_vOut4 _childrenIpp _childrenIppL) = inv_Children_s5 _childrenX5 (T_Children_vIn4 )
(T_Rules_vOut34 _rulesIpp _rulesIppL) = inv_Rules_s35 _rulesX35 (T_Rules_vIn34 )
(T_TypeSigs_vOut40 _typeSigsIpp _typeSigsIppL) = inv_TypeSigs_s41 _typeSigsX41 (T_TypeSigs_vIn40 )
_lhsOpp :: PP_Doc
_lhsOpp = rule35 _childrenIppL _rulesIppL _typeSigsIppL arg_con_
__result_ = T_Production_vOut25 _lhsOpp
in __result_ )
in C_Production_s26 v25
rule35 = \ ((_childrenIppL) :: [PP_Doc]) ((_rulesIppL) :: [PP_Doc]) ((_typeSigsIppL) :: [PP_Doc]) con_ ->
ppNestInfo ["Production","Production"] [pp con_] [ppF "children" $ ppVList _childrenIppL,ppF "rules" $ ppVList _rulesIppL,ppF "typeSigs" $ ppVList _typeSigsIppL] []
data Inh_Productions = Inh_Productions { }
data Syn_Productions = Syn_Productions { pp_Syn_Productions :: (PP_Doc), ppL_Syn_Productions :: ([PP_Doc]) }
wrap_Productions :: T_Productions -> Inh_Productions -> (Syn_Productions )
wrap_Productions (T_Productions act) (Inh_Productions ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Productions_vIn28
(T_Productions_vOut28 _lhsOpp _lhsOppL) <- return (inv_Productions_s29 sem arg)
return (Syn_Productions _lhsOpp _lhsOppL)
)
sem_Productions :: Productions -> T_Productions
sem_Productions list = Prelude.foldr sem_Productions_Cons sem_Productions_Nil (Prelude.map sem_Production list)
newtype T_Productions = T_Productions {
attach_T_Productions :: Identity (T_Productions_s29 )
}
newtype T_Productions_s29 = C_Productions_s29 {
inv_Productions_s29 :: (T_Productions_v28 )
}
data T_Productions_s30 = C_Productions_s30
type T_Productions_v28 = (T_Productions_vIn28 ) -> (T_Productions_vOut28 )
data T_Productions_vIn28 = T_Productions_vIn28
data T_Productions_vOut28 = T_Productions_vOut28 (PP_Doc) ([PP_Doc])
sem_Productions_Cons :: T_Production -> T_Productions -> T_Productions
sem_Productions_Cons arg_hd_ arg_tl_ = T_Productions (return st29) where
st29 = let
v28 :: T_Productions_v28
v28 = \ (T_Productions_vIn28 ) -> ( let
_hdX26 = Control.Monad.Identity.runIdentity (attach_T_Production (arg_hd_))
_tlX29 = Control.Monad.Identity.runIdentity (attach_T_Productions (arg_tl_))
(T_Production_vOut25 _hdIpp) = inv_Production_s26 _hdX26 (T_Production_vIn25 )
(T_Productions_vOut28 _tlIpp _tlIppL) = inv_Productions_s29 _tlX29 (T_Productions_vIn28 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule36 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule37 _hdIpp _tlIpp
__result_ = T_Productions_vOut28 _lhsOpp _lhsOppL
in __result_ )
in C_Productions_s29 v28
rule36 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule37 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
sem_Productions_Nil :: T_Productions
sem_Productions_Nil = T_Productions (return st29) where
st29 = let
v28 :: T_Productions_v28
v28 = \ (T_Productions_vIn28 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule38 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule39 ()
__result_ = T_Productions_vOut28 _lhsOpp _lhsOppL
in __result_ )
in C_Productions_s29 v28
rule38 = \ (_ :: ()) ->
[]
rule39 = \ (_ :: ()) ->
empty
data Inh_Rule = Inh_Rule { }
data Syn_Rule = Syn_Rule { pp_Syn_Rule :: (PP_Doc) }
wrap_Rule :: T_Rule -> Inh_Rule -> (Syn_Rule )
wrap_Rule (T_Rule act) (Inh_Rule ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Rule_vIn31
(T_Rule_vOut31 _lhsOpp) <- return (inv_Rule_s32 sem arg)
return (Syn_Rule _lhsOpp)
)
sem_Rule :: Rule -> T_Rule
sem_Rule ( Rule mbName_ pattern_ rhs_ owrt_ origin_ explicit_ pure_ identity_ mbError_ eager_ ) = sem_Rule_Rule mbName_ ( sem_Pattern pattern_ ) ( sem_Expression rhs_ ) owrt_ origin_ explicit_ pure_ identity_ mbError_ eager_
newtype T_Rule = T_Rule {
attach_T_Rule :: Identity (T_Rule_s32 )
}
newtype T_Rule_s32 = C_Rule_s32 {
inv_Rule_s32 :: (T_Rule_v31 )
}
data T_Rule_s33 = C_Rule_s33
type T_Rule_v31 = (T_Rule_vIn31 ) -> (T_Rule_vOut31 )
data T_Rule_vIn31 = T_Rule_vIn31
data T_Rule_vOut31 = T_Rule_vOut31 (PP_Doc)
sem_Rule_Rule :: (Maybe Identifier) -> T_Pattern -> T_Expression -> (Bool) -> (String) -> (Bool) -> (Bool) -> (Bool) -> (Maybe Error) -> (Bool) -> T_Rule
sem_Rule_Rule _ arg_pattern_ arg_rhs_ arg_owrt_ arg_origin_ _ _ _ _ _ = T_Rule (return st32) where
st32 = let
v31 :: T_Rule_v31
v31 = \ (T_Rule_vIn31 ) -> ( let
_patternX20 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pattern_))
_rhsX8 = Control.Monad.Identity.runIdentity (attach_T_Expression (arg_rhs_))
(T_Pattern_vOut19 _patternIcopy _patternIpp) = inv_Pattern_s20 _patternX20 (T_Pattern_vIn19 )
(T_Expression_vOut7 _rhsIpp) = inv_Expression_s8 _rhsX8 (T_Expression_vIn7 )
_lhsOpp :: PP_Doc
_lhsOpp = rule40 _patternIpp _rhsIpp arg_origin_ arg_owrt_
__result_ = T_Rule_vOut31 _lhsOpp
in __result_ )
in C_Rule_s32 v31
rule40 = \ ((_patternIpp) :: PP_Doc) ((_rhsIpp) :: PP_Doc) origin_ owrt_ ->
ppNestInfo ["Rule","Rule"] [ppShow owrt_, pp origin_] [ppF "pattern" $ _patternIpp, ppF "rhs" $ _rhsIpp] []
data Inh_Rules = Inh_Rules { }
data Syn_Rules = Syn_Rules { pp_Syn_Rules :: (PP_Doc), ppL_Syn_Rules :: ([PP_Doc]) }
wrap_Rules :: T_Rules -> Inh_Rules -> (Syn_Rules )
wrap_Rules (T_Rules act) (Inh_Rules ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_Rules_vIn34
(T_Rules_vOut34 _lhsOpp _lhsOppL) <- return (inv_Rules_s35 sem arg)
return (Syn_Rules _lhsOpp _lhsOppL)
)
sem_Rules :: Rules -> T_Rules
sem_Rules list = Prelude.foldr sem_Rules_Cons sem_Rules_Nil (Prelude.map sem_Rule list)
newtype T_Rules = T_Rules {
attach_T_Rules :: Identity (T_Rules_s35 )
}
newtype T_Rules_s35 = C_Rules_s35 {
inv_Rules_s35 :: (T_Rules_v34 )
}
data T_Rules_s36 = C_Rules_s36
type T_Rules_v34 = (T_Rules_vIn34 ) -> (T_Rules_vOut34 )
data T_Rules_vIn34 = T_Rules_vIn34
data T_Rules_vOut34 = T_Rules_vOut34 (PP_Doc) ([PP_Doc])
sem_Rules_Cons :: T_Rule -> T_Rules -> T_Rules
sem_Rules_Cons arg_hd_ arg_tl_ = T_Rules (return st35) where
st35 = let
v34 :: T_Rules_v34
v34 = \ (T_Rules_vIn34 ) -> ( let
_hdX32 = Control.Monad.Identity.runIdentity (attach_T_Rule (arg_hd_))
_tlX35 = Control.Monad.Identity.runIdentity (attach_T_Rules (arg_tl_))
(T_Rule_vOut31 _hdIpp) = inv_Rule_s32 _hdX32 (T_Rule_vIn31 )
(T_Rules_vOut34 _tlIpp _tlIppL) = inv_Rules_s35 _tlX35 (T_Rules_vIn34 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule41 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule42 _hdIpp _tlIpp
__result_ = T_Rules_vOut34 _lhsOpp _lhsOppL
in __result_ )
in C_Rules_s35 v34
rule41 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule42 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
sem_Rules_Nil :: T_Rules
sem_Rules_Nil = T_Rules (return st35) where
st35 = let
v34 :: T_Rules_v34
v34 = \ (T_Rules_vIn34 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule43 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule44 ()
__result_ = T_Rules_vOut34 _lhsOpp _lhsOppL
in __result_ )
in C_Rules_s35 v34
rule43 = \ (_ :: ()) ->
[]
rule44 = \ (_ :: ()) ->
empty
data Inh_TypeSig = Inh_TypeSig { }
data Syn_TypeSig = Syn_TypeSig { pp_Syn_TypeSig :: (PP_Doc) }
wrap_TypeSig :: T_TypeSig -> Inh_TypeSig -> (Syn_TypeSig )
wrap_TypeSig (T_TypeSig act) (Inh_TypeSig ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_TypeSig_vIn37
(T_TypeSig_vOut37 _lhsOpp) <- return (inv_TypeSig_s38 sem arg)
return (Syn_TypeSig _lhsOpp)
)
sem_TypeSig :: TypeSig -> T_TypeSig
sem_TypeSig ( TypeSig name_ tp_ ) = sem_TypeSig_TypeSig name_ tp_
newtype T_TypeSig = T_TypeSig {
attach_T_TypeSig :: Identity (T_TypeSig_s38 )
}
newtype T_TypeSig_s38 = C_TypeSig_s38 {
inv_TypeSig_s38 :: (T_TypeSig_v37 )
}
data T_TypeSig_s39 = C_TypeSig_s39
type T_TypeSig_v37 = (T_TypeSig_vIn37 ) -> (T_TypeSig_vOut37 )
data T_TypeSig_vIn37 = T_TypeSig_vIn37
data T_TypeSig_vOut37 = T_TypeSig_vOut37 (PP_Doc)
sem_TypeSig_TypeSig :: (Identifier) -> (Type) -> T_TypeSig
sem_TypeSig_TypeSig arg_name_ arg_tp_ = T_TypeSig (return st38) where
st38 = let
v37 :: T_TypeSig_v37
v37 = \ (T_TypeSig_vIn37 ) -> ( let
_lhsOpp :: PP_Doc
_lhsOpp = rule45 arg_name_ arg_tp_
__result_ = T_TypeSig_vOut37 _lhsOpp
in __result_ )
in C_TypeSig_s38 v37
rule45 = \ name_ tp_ ->
ppNestInfo ["TypeSig","TypeSig"] [pp name_, ppShow tp_] [] []
data Inh_TypeSigs = Inh_TypeSigs { }
data Syn_TypeSigs = Syn_TypeSigs { pp_Syn_TypeSigs :: (PP_Doc), ppL_Syn_TypeSigs :: ([PP_Doc]) }
wrap_TypeSigs :: T_TypeSigs -> Inh_TypeSigs -> (Syn_TypeSigs )
wrap_TypeSigs (T_TypeSigs act) (Inh_TypeSigs ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg = T_TypeSigs_vIn40
(T_TypeSigs_vOut40 _lhsOpp _lhsOppL) <- return (inv_TypeSigs_s41 sem arg)
return (Syn_TypeSigs _lhsOpp _lhsOppL)
)
sem_TypeSigs :: TypeSigs -> T_TypeSigs
sem_TypeSigs list = Prelude.foldr sem_TypeSigs_Cons sem_TypeSigs_Nil (Prelude.map sem_TypeSig list)
newtype T_TypeSigs = T_TypeSigs {
attach_T_TypeSigs :: Identity (T_TypeSigs_s41 )
}
newtype T_TypeSigs_s41 = C_TypeSigs_s41 {
inv_TypeSigs_s41 :: (T_TypeSigs_v40 )
}
data T_TypeSigs_s42 = C_TypeSigs_s42
type T_TypeSigs_v40 = (T_TypeSigs_vIn40 ) -> (T_TypeSigs_vOut40 )
data T_TypeSigs_vIn40 = T_TypeSigs_vIn40
data T_TypeSigs_vOut40 = T_TypeSigs_vOut40 (PP_Doc) ([PP_Doc])
sem_TypeSigs_Cons :: T_TypeSig -> T_TypeSigs -> T_TypeSigs
sem_TypeSigs_Cons arg_hd_ arg_tl_ = T_TypeSigs (return st41) where
st41 = let
v40 :: T_TypeSigs_v40
v40 = \ (T_TypeSigs_vIn40 ) -> ( let
_hdX38 = Control.Monad.Identity.runIdentity (attach_T_TypeSig (arg_hd_))
_tlX41 = Control.Monad.Identity.runIdentity (attach_T_TypeSigs (arg_tl_))
(T_TypeSig_vOut37 _hdIpp) = inv_TypeSig_s38 _hdX38 (T_TypeSig_vIn37 )
(T_TypeSigs_vOut40 _tlIpp _tlIppL) = inv_TypeSigs_s41 _tlX41 (T_TypeSigs_vIn40 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule46 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule47 _hdIpp _tlIpp
__result_ = T_TypeSigs_vOut40 _lhsOpp _lhsOppL
in __result_ )
in C_TypeSigs_s41 v40
rule46 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule47 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
sem_TypeSigs_Nil :: T_TypeSigs
sem_TypeSigs_Nil = T_TypeSigs (return st41) where
st41 = let
v40 :: T_TypeSigs_v40
v40 = \ (T_TypeSigs_vIn40 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule48 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule49 ()
__result_ = T_TypeSigs_vOut40 _lhsOpp _lhsOppL
in __result_ )
in C_TypeSigs_s41 v40
rule48 = \ (_ :: ()) ->
[]
rule49 = \ (_ :: ()) ->
empty