module CodeSyntaxDump where
import UU.Scanner.Position(Pos)
import CommonTypes (ConstructorIdent,Identifier)
import Patterns
import CommonTypes
import Data.Map(Map)
import Data.Set(Set)
import Data.List
import qualified Data.Map as Map
import Pretty
import PPUtil
import CodeSyntax
import Control.Monad.Identity (Identity)
import qualified Control.Monad.Identity
ppChild :: (Identifier,Type,ChildKind) -> PP_Doc
ppChild (nm,tp,_)
= pp nm >#< "::" >#< pp (show tp)
ppVertexMap :: Map Int (Identifier,Identifier,Maybe Type) -> PP_Doc
ppVertexMap m
= ppVList [ ppF (show k) $ ppAttr v | (k,v) <- Map.toList m ]
ppAttr :: (Identifier,Identifier,Maybe Type) -> PP_Doc
ppAttr (fld,nm,mTp)
= pp fld >|< "." >|< pp nm >#<
case mTp of
Just tp -> pp "::" >#< show tp
Nothing -> empty
ppBool :: Bool -> PP_Doc
ppBool True = pp "T"
ppBool False = pp "F"
ppMaybeShow :: Show a => Maybe a -> PP_Doc
ppMaybeShow (Just x) = pp (show x)
ppMaybeShow Nothing = pp "_"
ppStrings :: [String] -> PP_Doc
ppStrings = vlist
data Inh_CGrammar = Inh_CGrammar { }
data Syn_CGrammar = Syn_CGrammar { pp_Syn_CGrammar :: (PP_Doc) }
wrap_CGrammar :: T_CGrammar -> Inh_CGrammar -> (Syn_CGrammar )
wrap_CGrammar (T_CGrammar act) (Inh_CGrammar ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg1 = T_CGrammar_vIn1
(T_CGrammar_vOut1 _lhsOpp) <- return (inv_CGrammar_s2 sem arg1)
return (Syn_CGrammar _lhsOpp)
)
sem_CGrammar :: CGrammar -> T_CGrammar
sem_CGrammar ( CGrammar typeSyns_ derivings_ wrappers_ nonts_ pragmas_ paramMap_ contextMap_ quantMap_ aroundsMap_ mergeMap_ multivisit_ ) = sem_CGrammar_CGrammar typeSyns_ derivings_ wrappers_ ( sem_CNonterminals nonts_ ) pragmas_ paramMap_ contextMap_ quantMap_ aroundsMap_ mergeMap_ multivisit_
newtype T_CGrammar = T_CGrammar {
attach_T_CGrammar :: Identity (T_CGrammar_s2 )
}
newtype T_CGrammar_s2 = C_CGrammar_s2 {
inv_CGrammar_s2 :: (T_CGrammar_v1 )
}
data T_CGrammar_s3 = C_CGrammar_s3
type T_CGrammar_v1 = (T_CGrammar_vIn1 ) -> (T_CGrammar_vOut1 )
data T_CGrammar_vIn1 = T_CGrammar_vIn1
data T_CGrammar_vOut1 = T_CGrammar_vOut1 (PP_Doc)
sem_CGrammar_CGrammar :: (TypeSyns) -> (Derivings) -> (Set NontermIdent) -> T_CNonterminals -> (PragmaMap) -> (ParamMap) -> (ContextMap) -> (QuantMap) -> (Map NontermIdent (Map ConstructorIdent (Set Identifier))) -> (Map NontermIdent (Map ConstructorIdent (Map Identifier (Identifier,[Identifier])))) -> (Bool) -> T_CGrammar
sem_CGrammar_CGrammar arg_typeSyns_ arg_derivings_ _ arg_nonts_ _ _ _ _ _ _ _ = T_CGrammar (return st2) where
st2 = let
v1 :: T_CGrammar_v1
v1 = \ (T_CGrammar_vIn1 ) -> ( let
_nontsX11 = Control.Monad.Identity.runIdentity (attach_T_CNonterminals (arg_nonts_))
(T_CNonterminals_vOut10 _nontsIpp _nontsIppL) = inv_CNonterminals_s11 _nontsX11 (T_CNonterminals_vIn10 )
_lhsOpp :: PP_Doc
_lhsOpp = rule0 _nontsIppL arg_derivings_ arg_typeSyns_
__result_ = T_CGrammar_vOut1 _lhsOpp
in __result_ )
in C_CGrammar_s2 v1
rule0 = \ ((_nontsIppL) :: [PP_Doc]) derivings_ typeSyns_ ->
ppNestInfo ["CGrammar","CGrammar"] []
[ ppF "typeSyns" $ ppAssocL typeSyns_
, ppF "derivings" $ ppMap $ derivings_
, ppF "nonts" $ ppVList _nontsIppL
] []
data Inh_CInterface = Inh_CInterface { }
data Syn_CInterface = Syn_CInterface { pp_Syn_CInterface :: (PP_Doc) }
wrap_CInterface :: T_CInterface -> Inh_CInterface -> (Syn_CInterface )
wrap_CInterface (T_CInterface act) (Inh_CInterface ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg4 = T_CInterface_vIn4
(T_CInterface_vOut4 _lhsOpp) <- return (inv_CInterface_s5 sem arg4)
return (Syn_CInterface _lhsOpp)
)
sem_CInterface :: CInterface -> T_CInterface
sem_CInterface ( CInterface seg_ ) = sem_CInterface_CInterface ( sem_CSegments seg_ )
newtype T_CInterface = T_CInterface {
attach_T_CInterface :: Identity (T_CInterface_s5 )
}
newtype T_CInterface_s5 = C_CInterface_s5 {
inv_CInterface_s5 :: (T_CInterface_v4 )
}
data T_CInterface_s6 = C_CInterface_s6
type T_CInterface_v4 = (T_CInterface_vIn4 ) -> (T_CInterface_vOut4 )
data T_CInterface_vIn4 = T_CInterface_vIn4
data T_CInterface_vOut4 = T_CInterface_vOut4 (PP_Doc)
sem_CInterface_CInterface :: T_CSegments -> T_CInterface
sem_CInterface_CInterface arg_seg_ = T_CInterface (return st5) where
st5 = let
v4 :: T_CInterface_v4
v4 = \ (T_CInterface_vIn4 ) -> ( let
_segX26 = Control.Monad.Identity.runIdentity (attach_T_CSegments (arg_seg_))
(T_CSegments_vOut25 _segIpp _segIppL) = inv_CSegments_s26 _segX26 (T_CSegments_vIn25 )
_lhsOpp :: PP_Doc
_lhsOpp = rule1 _segIppL
__result_ = T_CInterface_vOut4 _lhsOpp
in __result_ )
in C_CInterface_s5 v4
rule1 = \ ((_segIppL) :: [PP_Doc]) ->
ppNestInfo ["CInterface","CInterface"] [] [ppF "seg" $ ppVList _segIppL] []
data Inh_CNonterminal = Inh_CNonterminal { }
data Syn_CNonterminal = Syn_CNonterminal { pp_Syn_CNonterminal :: (PP_Doc) }
wrap_CNonterminal :: T_CNonterminal -> Inh_CNonterminal -> (Syn_CNonterminal )
wrap_CNonterminal (T_CNonterminal act) (Inh_CNonterminal ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg7 = T_CNonterminal_vIn7
(T_CNonterminal_vOut7 _lhsOpp) <- return (inv_CNonterminal_s8 sem arg7)
return (Syn_CNonterminal _lhsOpp)
)
sem_CNonterminal :: CNonterminal -> T_CNonterminal
sem_CNonterminal ( CNonterminal nt_ params_ inh_ syn_ prods_ inter_ ) = sem_CNonterminal_CNonterminal nt_ params_ inh_ syn_ ( sem_CProductions prods_ ) ( sem_CInterface inter_ )
newtype T_CNonterminal = T_CNonterminal {
attach_T_CNonterminal :: Identity (T_CNonterminal_s8 )
}
newtype T_CNonterminal_s8 = C_CNonterminal_s8 {
inv_CNonterminal_s8 :: (T_CNonterminal_v7 )
}
data T_CNonterminal_s9 = C_CNonterminal_s9
type T_CNonterminal_v7 = (T_CNonterminal_vIn7 ) -> (T_CNonterminal_vOut7 )
data T_CNonterminal_vIn7 = T_CNonterminal_vIn7
data T_CNonterminal_vOut7 = T_CNonterminal_vOut7 (PP_Doc)
sem_CNonterminal_CNonterminal :: (NontermIdent) -> ([Identifier]) -> (Attributes) -> (Attributes) -> T_CProductions -> T_CInterface -> T_CNonterminal
sem_CNonterminal_CNonterminal arg_nt_ arg_params_ arg_inh_ arg_syn_ arg_prods_ arg_inter_ = T_CNonterminal (return st8) where
st8 = let
v7 :: T_CNonterminal_v7
v7 = \ (T_CNonterminal_vIn7 ) -> ( let
_prodsX17 = Control.Monad.Identity.runIdentity (attach_T_CProductions (arg_prods_))
_interX5 = Control.Monad.Identity.runIdentity (attach_T_CInterface (arg_inter_))
(T_CProductions_vOut16 _prodsIpp _prodsIppL) = inv_CProductions_s17 _prodsX17 (T_CProductions_vIn16 )
(T_CInterface_vOut4 _interIpp) = inv_CInterface_s5 _interX5 (T_CInterface_vIn4 )
_lhsOpp :: PP_Doc
_lhsOpp = rule2 _interIpp _prodsIppL arg_inh_ arg_nt_ arg_params_ arg_syn_
__result_ = T_CNonterminal_vOut7 _lhsOpp
in __result_ )
in C_CNonterminal_s8 v7
rule2 = \ ((_interIpp) :: PP_Doc) ((_prodsIppL) :: [PP_Doc]) inh_ nt_ params_ syn_ ->
ppNestInfo ["CNonterminal","CNonterminal"] (pp nt_ : map pp params_) [ppF "inh" $ ppMap inh_, ppF "syn" $ ppMap syn_, ppF "prods" $ ppVList _prodsIppL, ppF "inter" _interIpp] []
data Inh_CNonterminals = Inh_CNonterminals { }
data Syn_CNonterminals = Syn_CNonterminals { pp_Syn_CNonterminals :: (PP_Doc), ppL_Syn_CNonterminals :: ([PP_Doc]) }
wrap_CNonterminals :: T_CNonterminals -> Inh_CNonterminals -> (Syn_CNonterminals )
wrap_CNonterminals (T_CNonterminals act) (Inh_CNonterminals ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg10 = T_CNonterminals_vIn10
(T_CNonterminals_vOut10 _lhsOpp _lhsOppL) <- return (inv_CNonterminals_s11 sem arg10)
return (Syn_CNonterminals _lhsOpp _lhsOppL)
)
sem_CNonterminals :: CNonterminals -> T_CNonterminals
sem_CNonterminals list = Prelude.foldr sem_CNonterminals_Cons sem_CNonterminals_Nil (Prelude.map sem_CNonterminal list)
newtype T_CNonterminals = T_CNonterminals {
attach_T_CNonterminals :: Identity (T_CNonterminals_s11 )
}
newtype T_CNonterminals_s11 = C_CNonterminals_s11 {
inv_CNonterminals_s11 :: (T_CNonterminals_v10 )
}
data T_CNonterminals_s12 = C_CNonterminals_s12
type T_CNonterminals_v10 = (T_CNonterminals_vIn10 ) -> (T_CNonterminals_vOut10 )
data T_CNonterminals_vIn10 = T_CNonterminals_vIn10
data T_CNonterminals_vOut10 = T_CNonterminals_vOut10 (PP_Doc) ([PP_Doc])
sem_CNonterminals_Cons :: T_CNonterminal -> T_CNonterminals -> T_CNonterminals
sem_CNonterminals_Cons arg_hd_ arg_tl_ = T_CNonterminals (return st11) where
st11 = let
v10 :: T_CNonterminals_v10
v10 = \ (T_CNonterminals_vIn10 ) -> ( let
_hdX8 = Control.Monad.Identity.runIdentity (attach_T_CNonterminal (arg_hd_))
_tlX11 = Control.Monad.Identity.runIdentity (attach_T_CNonterminals (arg_tl_))
(T_CNonterminal_vOut7 _hdIpp) = inv_CNonterminal_s8 _hdX8 (T_CNonterminal_vIn7 )
(T_CNonterminals_vOut10 _tlIpp _tlIppL) = inv_CNonterminals_s11 _tlX11 (T_CNonterminals_vIn10 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule3 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule4 _hdIpp _tlIpp
__result_ = T_CNonterminals_vOut10 _lhsOpp _lhsOppL
in __result_ )
in C_CNonterminals_s11 v10
rule3 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule4 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
sem_CNonterminals_Nil :: T_CNonterminals
sem_CNonterminals_Nil = T_CNonterminals (return st11) where
st11 = let
v10 :: T_CNonterminals_v10
v10 = \ (T_CNonterminals_vIn10 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule5 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule6 ()
__result_ = T_CNonterminals_vOut10 _lhsOpp _lhsOppL
in __result_ )
in C_CNonterminals_s11 v10
rule5 = \ (_ :: ()) ->
[]
rule6 = \ (_ :: ()) ->
empty
data Inh_CProduction = Inh_CProduction { }
data Syn_CProduction = Syn_CProduction { pp_Syn_CProduction :: (PP_Doc) }
wrap_CProduction :: T_CProduction -> Inh_CProduction -> (Syn_CProduction )
wrap_CProduction (T_CProduction act) (Inh_CProduction ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg13 = T_CProduction_vIn13
(T_CProduction_vOut13 _lhsOpp) <- return (inv_CProduction_s14 sem arg13)
return (Syn_CProduction _lhsOpp)
)
sem_CProduction :: CProduction -> T_CProduction
sem_CProduction ( CProduction con_ visits_ children_ terminals_ ) = sem_CProduction_CProduction con_ ( sem_CVisits visits_ ) children_ terminals_
newtype T_CProduction = T_CProduction {
attach_T_CProduction :: Identity (T_CProduction_s14 )
}
newtype T_CProduction_s14 = C_CProduction_s14 {
inv_CProduction_s14 :: (T_CProduction_v13 )
}
data T_CProduction_s15 = C_CProduction_s15
type T_CProduction_v13 = (T_CProduction_vIn13 ) -> (T_CProduction_vOut13 )
data T_CProduction_vIn13 = T_CProduction_vIn13
data T_CProduction_vOut13 = T_CProduction_vOut13 (PP_Doc)
sem_CProduction_CProduction :: (ConstructorIdent) -> T_CVisits -> ([(Identifier,Type,ChildKind)]) -> ([Identifier]) -> T_CProduction
sem_CProduction_CProduction arg_con_ arg_visits_ arg_children_ arg_terminals_ = T_CProduction (return st14) where
st14 = let
v13 :: T_CProduction_v13
v13 = \ (T_CProduction_vIn13 ) -> ( let
_visitsX32 = Control.Monad.Identity.runIdentity (attach_T_CVisits (arg_visits_))
(T_CVisits_vOut31 _visitsIpp _visitsIppL) = inv_CVisits_s32 _visitsX32 (T_CVisits_vIn31 )
_lhsOpp :: PP_Doc
_lhsOpp = rule7 _visitsIppL arg_children_ arg_con_ arg_terminals_
__result_ = T_CProduction_vOut13 _lhsOpp
in __result_ )
in C_CProduction_s14 v13
rule7 = \ ((_visitsIppL) :: [PP_Doc]) children_ con_ terminals_ ->
ppNestInfo ["CProduction","CProduction"] [pp con_] [ppF "visits" $ ppVList _visitsIppL, ppF "children" $ ppVList (map ppChild children_),ppF "terminals" $ ppVList (map ppShow terminals_)] []
data Inh_CProductions = Inh_CProductions { }
data Syn_CProductions = Syn_CProductions { pp_Syn_CProductions :: (PP_Doc), ppL_Syn_CProductions :: ([PP_Doc]) }
wrap_CProductions :: T_CProductions -> Inh_CProductions -> (Syn_CProductions )
wrap_CProductions (T_CProductions act) (Inh_CProductions ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg16 = T_CProductions_vIn16
(T_CProductions_vOut16 _lhsOpp _lhsOppL) <- return (inv_CProductions_s17 sem arg16)
return (Syn_CProductions _lhsOpp _lhsOppL)
)
sem_CProductions :: CProductions -> T_CProductions
sem_CProductions list = Prelude.foldr sem_CProductions_Cons sem_CProductions_Nil (Prelude.map sem_CProduction list)
newtype T_CProductions = T_CProductions {
attach_T_CProductions :: Identity (T_CProductions_s17 )
}
newtype T_CProductions_s17 = C_CProductions_s17 {
inv_CProductions_s17 :: (T_CProductions_v16 )
}
data T_CProductions_s18 = C_CProductions_s18
type T_CProductions_v16 = (T_CProductions_vIn16 ) -> (T_CProductions_vOut16 )
data T_CProductions_vIn16 = T_CProductions_vIn16
data T_CProductions_vOut16 = T_CProductions_vOut16 (PP_Doc) ([PP_Doc])
sem_CProductions_Cons :: T_CProduction -> T_CProductions -> T_CProductions
sem_CProductions_Cons arg_hd_ arg_tl_ = T_CProductions (return st17) where
st17 = let
v16 :: T_CProductions_v16
v16 = \ (T_CProductions_vIn16 ) -> ( let
_hdX14 = Control.Monad.Identity.runIdentity (attach_T_CProduction (arg_hd_))
_tlX17 = Control.Monad.Identity.runIdentity (attach_T_CProductions (arg_tl_))
(T_CProduction_vOut13 _hdIpp) = inv_CProduction_s14 _hdX14 (T_CProduction_vIn13 )
(T_CProductions_vOut16 _tlIpp _tlIppL) = inv_CProductions_s17 _tlX17 (T_CProductions_vIn16 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule8 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule9 _hdIpp _tlIpp
__result_ = T_CProductions_vOut16 _lhsOpp _lhsOppL
in __result_ )
in C_CProductions_s17 v16
rule8 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule9 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
sem_CProductions_Nil :: T_CProductions
sem_CProductions_Nil = T_CProductions (return st17) where
st17 = let
v16 :: T_CProductions_v16
v16 = \ (T_CProductions_vIn16 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule10 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule11 ()
__result_ = T_CProductions_vOut16 _lhsOpp _lhsOppL
in __result_ )
in C_CProductions_s17 v16
rule10 = \ (_ :: ()) ->
[]
rule11 = \ (_ :: ()) ->
empty
data Inh_CRule = Inh_CRule { }
data Syn_CRule = Syn_CRule { pp_Syn_CRule :: (PP_Doc) }
wrap_CRule :: T_CRule -> Inh_CRule -> (Syn_CRule )
wrap_CRule (T_CRule act) (Inh_CRule ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg19 = T_CRule_vIn19
(T_CRule_vOut19 _lhsOpp) <- return (inv_CRule_s20 sem arg19)
return (Syn_CRule _lhsOpp)
)
sem_CRule :: CRule -> T_CRule
sem_CRule ( CRule name_ isIn_ hasCode_ nt_ con_ field_ childnt_ tp_ pattern_ rhs_ defines_ owrt_ origin_ uses_ explicit_ mbNamed_ ) = sem_CRule_CRule name_ isIn_ hasCode_ nt_ con_ field_ childnt_ tp_ ( sem_Pattern pattern_ ) rhs_ defines_ owrt_ origin_ uses_ explicit_ mbNamed_
sem_CRule ( CChildVisit name_ nt_ nr_ inh_ syn_ isLast_ ) = sem_CRule_CChildVisit name_ nt_ nr_ inh_ syn_ isLast_
newtype T_CRule = T_CRule {
attach_T_CRule :: Identity (T_CRule_s20 )
}
newtype T_CRule_s20 = C_CRule_s20 {
inv_CRule_s20 :: (T_CRule_v19 )
}
data T_CRule_s21 = C_CRule_s21
type T_CRule_v19 = (T_CRule_vIn19 ) -> (T_CRule_vOut19 )
data T_CRule_vIn19 = T_CRule_vIn19
data T_CRule_vOut19 = T_CRule_vOut19 (PP_Doc)
sem_CRule_CRule :: (Identifier) -> (Bool) -> (Bool) -> (NontermIdent) -> (ConstructorIdent) -> (Identifier) -> (Maybe NontermIdent) -> (Maybe Type) -> T_Pattern -> ([String]) -> (Map Int (Identifier,Identifier,Maybe Type)) -> (Bool) -> (String) -> (Set (Identifier, Identifier)) -> (Bool) -> (Maybe Identifier) -> T_CRule
sem_CRule_CRule arg_name_ arg_isIn_ arg_hasCode_ arg_nt_ arg_con_ arg_field_ arg_childnt_ arg_tp_ arg_pattern_ arg_rhs_ arg_defines_ arg_owrt_ arg_origin_ _ _ _ = T_CRule (return st20) where
st20 = let
v19 :: T_CRule_v19
v19 = \ (T_CRule_vIn19 ) -> ( let
_patternX35 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pattern_))
(T_Pattern_vOut34 _patternIcopy _patternIpp) = inv_Pattern_s35 _patternX35 (T_Pattern_vIn34 )
_lhsOpp :: PP_Doc
_lhsOpp = rule12 _patternIpp arg_childnt_ arg_con_ arg_defines_ arg_field_ arg_hasCode_ arg_isIn_ arg_name_ arg_nt_ arg_origin_ arg_owrt_ arg_rhs_ arg_tp_
__result_ = T_CRule_vOut19 _lhsOpp
in __result_ )
in C_CRule_s20 v19
rule12 = \ ((_patternIpp) :: PP_Doc) childnt_ con_ defines_ field_ hasCode_ isIn_ name_ nt_ origin_ owrt_ rhs_ tp_ ->
ppNestInfo ["CRule","CRule"] [pp name_] [ppF "isIn" $ ppBool isIn_, ppF "hasCode" $ ppBool hasCode_, ppF "nt" $ pp nt_, ppF "con" $ pp con_, ppF "field" $ pp field_, ppF "childnt" $ ppMaybeShow childnt_, ppF "tp" $ ppMaybeShow tp_, ppF "pattern" $ if isIn_ then pp "<no pat because In>" else _patternIpp, ppF "rhs" $ ppStrings rhs_, ppF "defines" $ ppVertexMap defines_, ppF "owrt" $ ppBool owrt_, ppF "origin" $ pp origin_] []
sem_CRule_CChildVisit :: (Identifier) -> (NontermIdent) -> (Int) -> (Attributes) -> (Attributes) -> (Bool) -> T_CRule
sem_CRule_CChildVisit arg_name_ arg_nt_ arg_nr_ arg_inh_ arg_syn_ arg_isLast_ = T_CRule (return st20) where
st20 = let
v19 :: T_CRule_v19
v19 = \ (T_CRule_vIn19 ) -> ( let
_lhsOpp :: PP_Doc
_lhsOpp = rule13 arg_inh_ arg_isLast_ arg_name_ arg_nr_ arg_nt_ arg_syn_
__result_ = T_CRule_vOut19 _lhsOpp
in __result_ )
in C_CRule_s20 v19
rule13 = \ inh_ isLast_ name_ nr_ nt_ syn_ ->
ppNestInfo ["CRule","CChildVisit"] [pp name_] [ppF "nt" $ pp nt_, ppF "nr" $ ppShow nr_, ppF "inh" $ ppMap inh_, ppF "syn" $ ppMap syn_, ppF "last" $ ppBool isLast_] []
data Inh_CSegment = Inh_CSegment { }
data Syn_CSegment = Syn_CSegment { pp_Syn_CSegment :: (PP_Doc) }
wrap_CSegment :: T_CSegment -> Inh_CSegment -> (Syn_CSegment )
wrap_CSegment (T_CSegment act) (Inh_CSegment ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg22 = T_CSegment_vIn22
(T_CSegment_vOut22 _lhsOpp) <- return (inv_CSegment_s23 sem arg22)
return (Syn_CSegment _lhsOpp)
)
sem_CSegment :: CSegment -> T_CSegment
sem_CSegment ( CSegment inh_ syn_ ) = sem_CSegment_CSegment inh_ syn_
newtype T_CSegment = T_CSegment {
attach_T_CSegment :: Identity (T_CSegment_s23 )
}
newtype T_CSegment_s23 = C_CSegment_s23 {
inv_CSegment_s23 :: (T_CSegment_v22 )
}
data T_CSegment_s24 = C_CSegment_s24
type T_CSegment_v22 = (T_CSegment_vIn22 ) -> (T_CSegment_vOut22 )
data T_CSegment_vIn22 = T_CSegment_vIn22
data T_CSegment_vOut22 = T_CSegment_vOut22 (PP_Doc)
sem_CSegment_CSegment :: (Attributes) -> (Attributes) -> T_CSegment
sem_CSegment_CSegment arg_inh_ arg_syn_ = T_CSegment (return st23) where
st23 = let
v22 :: T_CSegment_v22
v22 = \ (T_CSegment_vIn22 ) -> ( let
_lhsOpp :: PP_Doc
_lhsOpp = rule14 arg_inh_ arg_syn_
__result_ = T_CSegment_vOut22 _lhsOpp
in __result_ )
in C_CSegment_s23 v22
rule14 = \ inh_ syn_ ->
ppNestInfo ["CSegment","CSegment"] [] [ppF "inh" $ ppMap inh_, ppF "syn" $ ppMap syn_] []
data Inh_CSegments = Inh_CSegments { }
data Syn_CSegments = Syn_CSegments { pp_Syn_CSegments :: (PP_Doc), ppL_Syn_CSegments :: ([PP_Doc]) }
wrap_CSegments :: T_CSegments -> Inh_CSegments -> (Syn_CSegments )
wrap_CSegments (T_CSegments act) (Inh_CSegments ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg25 = T_CSegments_vIn25
(T_CSegments_vOut25 _lhsOpp _lhsOppL) <- return (inv_CSegments_s26 sem arg25)
return (Syn_CSegments _lhsOpp _lhsOppL)
)
sem_CSegments :: CSegments -> T_CSegments
sem_CSegments list = Prelude.foldr sem_CSegments_Cons sem_CSegments_Nil (Prelude.map sem_CSegment list)
newtype T_CSegments = T_CSegments {
attach_T_CSegments :: Identity (T_CSegments_s26 )
}
newtype T_CSegments_s26 = C_CSegments_s26 {
inv_CSegments_s26 :: (T_CSegments_v25 )
}
data T_CSegments_s27 = C_CSegments_s27
type T_CSegments_v25 = (T_CSegments_vIn25 ) -> (T_CSegments_vOut25 )
data T_CSegments_vIn25 = T_CSegments_vIn25
data T_CSegments_vOut25 = T_CSegments_vOut25 (PP_Doc) ([PP_Doc])
sem_CSegments_Cons :: T_CSegment -> T_CSegments -> T_CSegments
sem_CSegments_Cons arg_hd_ arg_tl_ = T_CSegments (return st26) where
st26 = let
v25 :: T_CSegments_v25
v25 = \ (T_CSegments_vIn25 ) -> ( let
_hdX23 = Control.Monad.Identity.runIdentity (attach_T_CSegment (arg_hd_))
_tlX26 = Control.Monad.Identity.runIdentity (attach_T_CSegments (arg_tl_))
(T_CSegment_vOut22 _hdIpp) = inv_CSegment_s23 _hdX23 (T_CSegment_vIn22 )
(T_CSegments_vOut25 _tlIpp _tlIppL) = inv_CSegments_s26 _tlX26 (T_CSegments_vIn25 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule15 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule16 _hdIpp _tlIpp
__result_ = T_CSegments_vOut25 _lhsOpp _lhsOppL
in __result_ )
in C_CSegments_s26 v25
rule15 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule16 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
sem_CSegments_Nil :: T_CSegments
sem_CSegments_Nil = T_CSegments (return st26) where
st26 = let
v25 :: T_CSegments_v25
v25 = \ (T_CSegments_vIn25 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule17 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule18 ()
__result_ = T_CSegments_vOut25 _lhsOpp _lhsOppL
in __result_ )
in C_CSegments_s26 v25
rule17 = \ (_ :: ()) ->
[]
rule18 = \ (_ :: ()) ->
empty
data Inh_CVisit = Inh_CVisit { }
data Syn_CVisit = Syn_CVisit { pp_Syn_CVisit :: (PP_Doc) }
wrap_CVisit :: T_CVisit -> Inh_CVisit -> (Syn_CVisit )
wrap_CVisit (T_CVisit act) (Inh_CVisit ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg28 = T_CVisit_vIn28
(T_CVisit_vOut28 _lhsOpp) <- return (inv_CVisit_s29 sem arg28)
return (Syn_CVisit _lhsOpp)
)
sem_CVisit :: CVisit -> T_CVisit
sem_CVisit ( CVisit inh_ syn_ vss_ intra_ ordered_ ) = sem_CVisit_CVisit inh_ syn_ ( sem_Sequence vss_ ) ( sem_Sequence intra_ ) ordered_
newtype T_CVisit = T_CVisit {
attach_T_CVisit :: Identity (T_CVisit_s29 )
}
newtype T_CVisit_s29 = C_CVisit_s29 {
inv_CVisit_s29 :: (T_CVisit_v28 )
}
data T_CVisit_s30 = C_CVisit_s30
type T_CVisit_v28 = (T_CVisit_vIn28 ) -> (T_CVisit_vOut28 )
data T_CVisit_vIn28 = T_CVisit_vIn28
data T_CVisit_vOut28 = T_CVisit_vOut28 (PP_Doc)
sem_CVisit_CVisit :: (Attributes) -> (Attributes) -> T_Sequence -> T_Sequence -> (Bool) -> T_CVisit
sem_CVisit_CVisit arg_inh_ arg_syn_ arg_vss_ arg_intra_ arg_ordered_ = T_CVisit (return st29) where
st29 = let
v28 :: T_CVisit_v28
v28 = \ (T_CVisit_vIn28 ) -> ( let
_vssX41 = Control.Monad.Identity.runIdentity (attach_T_Sequence (arg_vss_))
_intraX41 = Control.Monad.Identity.runIdentity (attach_T_Sequence (arg_intra_))
(T_Sequence_vOut40 _vssIppL) = inv_Sequence_s41 _vssX41 (T_Sequence_vIn40 )
(T_Sequence_vOut40 _intraIppL) = inv_Sequence_s41 _intraX41 (T_Sequence_vIn40 )
_lhsOpp :: PP_Doc
_lhsOpp = rule19 _intraIppL _vssIppL arg_inh_ arg_ordered_ arg_syn_
__result_ = T_CVisit_vOut28 _lhsOpp
in __result_ )
in C_CVisit_s29 v28
rule19 = \ ((_intraIppL) :: [PP_Doc]) ((_vssIppL) :: [PP_Doc]) inh_ ordered_ syn_ ->
ppNestInfo ["CVisit","CVisit"] [] [ppF "inh" $ ppMap inh_, ppF "syn" $ ppMap syn_, ppF "sequence" $ ppVList _vssIppL, ppF "intra" $ ppVList _intraIppL, ppF "ordered" $ ppBool ordered_] []
data Inh_CVisits = Inh_CVisits { }
data Syn_CVisits = Syn_CVisits { pp_Syn_CVisits :: (PP_Doc), ppL_Syn_CVisits :: ([PP_Doc]) }
wrap_CVisits :: T_CVisits -> Inh_CVisits -> (Syn_CVisits )
wrap_CVisits (T_CVisits act) (Inh_CVisits ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg31 = T_CVisits_vIn31
(T_CVisits_vOut31 _lhsOpp _lhsOppL) <- return (inv_CVisits_s32 sem arg31)
return (Syn_CVisits _lhsOpp _lhsOppL)
)
sem_CVisits :: CVisits -> T_CVisits
sem_CVisits list = Prelude.foldr sem_CVisits_Cons sem_CVisits_Nil (Prelude.map sem_CVisit list)
newtype T_CVisits = T_CVisits {
attach_T_CVisits :: Identity (T_CVisits_s32 )
}
newtype T_CVisits_s32 = C_CVisits_s32 {
inv_CVisits_s32 :: (T_CVisits_v31 )
}
data T_CVisits_s33 = C_CVisits_s33
type T_CVisits_v31 = (T_CVisits_vIn31 ) -> (T_CVisits_vOut31 )
data T_CVisits_vIn31 = T_CVisits_vIn31
data T_CVisits_vOut31 = T_CVisits_vOut31 (PP_Doc) ([PP_Doc])
sem_CVisits_Cons :: T_CVisit -> T_CVisits -> T_CVisits
sem_CVisits_Cons arg_hd_ arg_tl_ = T_CVisits (return st32) where
st32 = let
v31 :: T_CVisits_v31
v31 = \ (T_CVisits_vIn31 ) -> ( let
_hdX29 = Control.Monad.Identity.runIdentity (attach_T_CVisit (arg_hd_))
_tlX32 = Control.Monad.Identity.runIdentity (attach_T_CVisits (arg_tl_))
(T_CVisit_vOut28 _hdIpp) = inv_CVisit_s29 _hdX29 (T_CVisit_vIn28 )
(T_CVisits_vOut31 _tlIpp _tlIppL) = inv_CVisits_s32 _tlX32 (T_CVisits_vIn31 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule20 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule21 _hdIpp _tlIpp
__result_ = T_CVisits_vOut31 _lhsOpp _lhsOppL
in __result_ )
in C_CVisits_s32 v31
rule20 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule21 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
sem_CVisits_Nil :: T_CVisits
sem_CVisits_Nil = T_CVisits (return st32) where
st32 = let
v31 :: T_CVisits_v31
v31 = \ (T_CVisits_vIn31 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule22 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule23 ()
__result_ = T_CVisits_vOut31 _lhsOpp _lhsOppL
in __result_ )
in C_CVisits_s32 v31
rule22 = \ (_ :: ()) ->
[]
rule23 = \ (_ :: ()) ->
empty
data Inh_Pattern = Inh_Pattern { }
data Syn_Pattern = Syn_Pattern { copy_Syn_Pattern :: (Pattern), pp_Syn_Pattern :: (PP_Doc) }
wrap_Pattern :: T_Pattern -> Inh_Pattern -> (Syn_Pattern )
wrap_Pattern (T_Pattern act) (Inh_Pattern ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg34 = T_Pattern_vIn34
(T_Pattern_vOut34 _lhsOcopy _lhsOpp) <- return (inv_Pattern_s35 sem arg34)
return (Syn_Pattern _lhsOcopy _lhsOpp)
)
sem_Pattern :: Pattern -> T_Pattern
sem_Pattern ( Constr name_ pats_ ) = sem_Pattern_Constr name_ ( sem_Patterns pats_ )
sem_Pattern ( Product pos_ pats_ ) = sem_Pattern_Product pos_ ( sem_Patterns pats_ )
sem_Pattern ( Alias field_ attr_ pat_ ) = sem_Pattern_Alias field_ attr_ ( sem_Pattern pat_ )
sem_Pattern ( Irrefutable pat_ ) = sem_Pattern_Irrefutable ( sem_Pattern pat_ )
sem_Pattern ( Underscore pos_ ) = sem_Pattern_Underscore pos_
newtype T_Pattern = T_Pattern {
attach_T_Pattern :: Identity (T_Pattern_s35 )
}
newtype T_Pattern_s35 = C_Pattern_s35 {
inv_Pattern_s35 :: (T_Pattern_v34 )
}
data T_Pattern_s36 = C_Pattern_s36
type T_Pattern_v34 = (T_Pattern_vIn34 ) -> (T_Pattern_vOut34 )
data T_Pattern_vIn34 = T_Pattern_vIn34
data T_Pattern_vOut34 = T_Pattern_vOut34 (Pattern) (PP_Doc)
sem_Pattern_Constr :: (ConstructorIdent) -> T_Patterns -> T_Pattern
sem_Pattern_Constr arg_name_ arg_pats_ = T_Pattern (return st35) where
st35 = let
v34 :: T_Pattern_v34
v34 = \ (T_Pattern_vIn34 ) -> ( let
_patsX38 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_pats_))
(T_Patterns_vOut37 _patsIcopy _patsIpp _patsIppL) = inv_Patterns_s38 _patsX38 (T_Patterns_vIn37 )
_lhsOpp :: PP_Doc
_lhsOpp = rule24 _patsIppL arg_name_
_copy = rule25 _patsIcopy arg_name_
_lhsOcopy :: Pattern
_lhsOcopy = rule26 _copy
__result_ = T_Pattern_vOut34 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s35 v34
rule24 = \ ((_patsIppL) :: [PP_Doc]) name_ ->
ppNestInfo ["Pattern","Constr"] [pp name_] [ppF "pats" $ ppVList _patsIppL] []
rule25 = \ ((_patsIcopy) :: Patterns) name_ ->
Constr name_ _patsIcopy
rule26 = \ _copy ->
_copy
sem_Pattern_Product :: (Pos) -> T_Patterns -> T_Pattern
sem_Pattern_Product arg_pos_ arg_pats_ = T_Pattern (return st35) where
st35 = let
v34 :: T_Pattern_v34
v34 = \ (T_Pattern_vIn34 ) -> ( let
_patsX38 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_pats_))
(T_Patterns_vOut37 _patsIcopy _patsIpp _patsIppL) = inv_Patterns_s38 _patsX38 (T_Patterns_vIn37 )
_lhsOpp :: PP_Doc
_lhsOpp = rule27 _patsIppL arg_pos_
_copy = rule28 _patsIcopy arg_pos_
_lhsOcopy :: Pattern
_lhsOcopy = rule29 _copy
__result_ = T_Pattern_vOut34 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s35 v34
rule27 = \ ((_patsIppL) :: [PP_Doc]) pos_ ->
ppNestInfo ["Pattern","Product"] [ppShow pos_] [ppF "pats" $ ppVList _patsIppL] []
rule28 = \ ((_patsIcopy) :: Patterns) pos_ ->
Product pos_ _patsIcopy
rule29 = \ _copy ->
_copy
sem_Pattern_Alias :: (Identifier) -> (Identifier) -> T_Pattern -> T_Pattern
sem_Pattern_Alias arg_field_ arg_attr_ arg_pat_ = T_Pattern (return st35) where
st35 = let
v34 :: T_Pattern_v34
v34 = \ (T_Pattern_vIn34 ) -> ( let
_patX35 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pat_))
(T_Pattern_vOut34 _patIcopy _patIpp) = inv_Pattern_s35 _patX35 (T_Pattern_vIn34 )
_lhsOpp :: PP_Doc
_lhsOpp = rule30 _patIpp arg_attr_ arg_field_
_copy = rule31 _patIcopy arg_attr_ arg_field_
_lhsOcopy :: Pattern
_lhsOcopy = rule32 _copy
__result_ = T_Pattern_vOut34 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s35 v34
rule30 = \ ((_patIpp) :: PP_Doc) attr_ field_ ->
ppNestInfo ["Pattern","Alias"] [pp field_, pp attr_] [ppF "pat" $ _patIpp] []
rule31 = \ ((_patIcopy) :: Pattern) attr_ field_ ->
Alias field_ attr_ _patIcopy
rule32 = \ _copy ->
_copy
sem_Pattern_Irrefutable :: T_Pattern -> T_Pattern
sem_Pattern_Irrefutable arg_pat_ = T_Pattern (return st35) where
st35 = let
v34 :: T_Pattern_v34
v34 = \ (T_Pattern_vIn34 ) -> ( let
_patX35 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_pat_))
(T_Pattern_vOut34 _patIcopy _patIpp) = inv_Pattern_s35 _patX35 (T_Pattern_vIn34 )
_lhsOpp :: PP_Doc
_lhsOpp = rule33 _patIpp
_copy = rule34 _patIcopy
_lhsOcopy :: Pattern
_lhsOcopy = rule35 _copy
__result_ = T_Pattern_vOut34 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s35 v34
rule33 = \ ((_patIpp) :: PP_Doc) ->
_patIpp
rule34 = \ ((_patIcopy) :: Pattern) ->
Irrefutable _patIcopy
rule35 = \ _copy ->
_copy
sem_Pattern_Underscore :: (Pos) -> T_Pattern
sem_Pattern_Underscore arg_pos_ = T_Pattern (return st35) where
st35 = let
v34 :: T_Pattern_v34
v34 = \ (T_Pattern_vIn34 ) -> ( let
_lhsOpp :: PP_Doc
_lhsOpp = rule36 arg_pos_
_copy = rule37 arg_pos_
_lhsOcopy :: Pattern
_lhsOcopy = rule38 _copy
__result_ = T_Pattern_vOut34 _lhsOcopy _lhsOpp
in __result_ )
in C_Pattern_s35 v34
rule36 = \ pos_ ->
ppNestInfo ["Pattern","Underscore"] [ppShow pos_] [] []
rule37 = \ pos_ ->
Underscore pos_
rule38 = \ _copy ->
_copy
data Inh_Patterns = Inh_Patterns { }
data Syn_Patterns = Syn_Patterns { copy_Syn_Patterns :: (Patterns), pp_Syn_Patterns :: (PP_Doc), ppL_Syn_Patterns :: ([PP_Doc]) }
wrap_Patterns :: T_Patterns -> Inh_Patterns -> (Syn_Patterns )
wrap_Patterns (T_Patterns act) (Inh_Patterns ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg37 = T_Patterns_vIn37
(T_Patterns_vOut37 _lhsOcopy _lhsOpp _lhsOppL) <- return (inv_Patterns_s38 sem arg37)
return (Syn_Patterns _lhsOcopy _lhsOpp _lhsOppL)
)
sem_Patterns :: Patterns -> T_Patterns
sem_Patterns list = Prelude.foldr sem_Patterns_Cons sem_Patterns_Nil (Prelude.map sem_Pattern list)
newtype T_Patterns = T_Patterns {
attach_T_Patterns :: Identity (T_Patterns_s38 )
}
newtype T_Patterns_s38 = C_Patterns_s38 {
inv_Patterns_s38 :: (T_Patterns_v37 )
}
data T_Patterns_s39 = C_Patterns_s39
type T_Patterns_v37 = (T_Patterns_vIn37 ) -> (T_Patterns_vOut37 )
data T_Patterns_vIn37 = T_Patterns_vIn37
data T_Patterns_vOut37 = T_Patterns_vOut37 (Patterns) (PP_Doc) ([PP_Doc])
sem_Patterns_Cons :: T_Pattern -> T_Patterns -> T_Patterns
sem_Patterns_Cons arg_hd_ arg_tl_ = T_Patterns (return st38) where
st38 = let
v37 :: T_Patterns_v37
v37 = \ (T_Patterns_vIn37 ) -> ( let
_hdX35 = Control.Monad.Identity.runIdentity (attach_T_Pattern (arg_hd_))
_tlX38 = Control.Monad.Identity.runIdentity (attach_T_Patterns (arg_tl_))
(T_Pattern_vOut34 _hdIcopy _hdIpp) = inv_Pattern_s35 _hdX35 (T_Pattern_vIn34 )
(T_Patterns_vOut37 _tlIcopy _tlIpp _tlIppL) = inv_Patterns_s38 _tlX38 (T_Patterns_vIn37 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule39 _hdIpp _tlIppL
_lhsOpp :: PP_Doc
_lhsOpp = rule40 _hdIpp _tlIpp
_copy = rule41 _hdIcopy _tlIcopy
_lhsOcopy :: Patterns
_lhsOcopy = rule42 _copy
__result_ = T_Patterns_vOut37 _lhsOcopy _lhsOpp _lhsOppL
in __result_ )
in C_Patterns_s38 v37
rule39 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
rule40 = \ ((_hdIpp) :: PP_Doc) ((_tlIpp) :: PP_Doc) ->
_hdIpp >-< _tlIpp
rule41 = \ ((_hdIcopy) :: Pattern) ((_tlIcopy) :: Patterns) ->
(:) _hdIcopy _tlIcopy
rule42 = \ _copy ->
_copy
sem_Patterns_Nil :: T_Patterns
sem_Patterns_Nil = T_Patterns (return st38) where
st38 = let
v37 :: T_Patterns_v37
v37 = \ (T_Patterns_vIn37 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule43 ()
_lhsOpp :: PP_Doc
_lhsOpp = rule44 ()
_copy = rule45 ()
_lhsOcopy :: Patterns
_lhsOcopy = rule46 _copy
__result_ = T_Patterns_vOut37 _lhsOcopy _lhsOpp _lhsOppL
in __result_ )
in C_Patterns_s38 v37
rule43 = \ (_ :: ()) ->
[]
rule44 = \ (_ :: ()) ->
empty
rule45 = \ (_ :: ()) ->
[]
rule46 = \ _copy ->
_copy
data Inh_Sequence = Inh_Sequence { }
data Syn_Sequence = Syn_Sequence { ppL_Syn_Sequence :: ([PP_Doc]) }
wrap_Sequence :: T_Sequence -> Inh_Sequence -> (Syn_Sequence )
wrap_Sequence (T_Sequence act) (Inh_Sequence ) =
Control.Monad.Identity.runIdentity (
do sem <- act
let arg40 = T_Sequence_vIn40
(T_Sequence_vOut40 _lhsOppL) <- return (inv_Sequence_s41 sem arg40)
return (Syn_Sequence _lhsOppL)
)
sem_Sequence :: Sequence -> T_Sequence
sem_Sequence list = Prelude.foldr sem_Sequence_Cons sem_Sequence_Nil (Prelude.map sem_CRule list)
newtype T_Sequence = T_Sequence {
attach_T_Sequence :: Identity (T_Sequence_s41 )
}
newtype T_Sequence_s41 = C_Sequence_s41 {
inv_Sequence_s41 :: (T_Sequence_v40 )
}
data T_Sequence_s42 = C_Sequence_s42
type T_Sequence_v40 = (T_Sequence_vIn40 ) -> (T_Sequence_vOut40 )
data T_Sequence_vIn40 = T_Sequence_vIn40
data T_Sequence_vOut40 = T_Sequence_vOut40 ([PP_Doc])
sem_Sequence_Cons :: T_CRule -> T_Sequence -> T_Sequence
sem_Sequence_Cons arg_hd_ arg_tl_ = T_Sequence (return st41) where
st41 = let
v40 :: T_Sequence_v40
v40 = \ (T_Sequence_vIn40 ) -> ( let
_hdX20 = Control.Monad.Identity.runIdentity (attach_T_CRule (arg_hd_))
_tlX41 = Control.Monad.Identity.runIdentity (attach_T_Sequence (arg_tl_))
(T_CRule_vOut19 _hdIpp) = inv_CRule_s20 _hdX20 (T_CRule_vIn19 )
(T_Sequence_vOut40 _tlIppL) = inv_Sequence_s41 _tlX41 (T_Sequence_vIn40 )
_lhsOppL :: [PP_Doc]
_lhsOppL = rule47 _hdIpp _tlIppL
__result_ = T_Sequence_vOut40 _lhsOppL
in __result_ )
in C_Sequence_s41 v40
rule47 = \ ((_hdIpp) :: PP_Doc) ((_tlIppL) :: [PP_Doc]) ->
_hdIpp : _tlIppL
sem_Sequence_Nil :: T_Sequence
sem_Sequence_Nil = T_Sequence (return st41) where
st41 = let
v40 :: T_Sequence_v40
v40 = \ (T_Sequence_vIn40 ) -> ( let
_lhsOppL :: [PP_Doc]
_lhsOppL = rule48 ()
__result_ = T_Sequence_vOut40 _lhsOppL
in __result_ )
in C_Sequence_s41 v40
rule48 = \ (_ :: ()) ->
[]