-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Nat, Fin and Vec types. -- -- This package provides length indexed lists, i.e. Vec. -- --
-- data Vec n a where
-- VNil :: Vec 'Nat.Z a
-- (:::) :: a -> Vec n a -> Vec ('Nat.S n) a
--
--
-- The functions are implemented in three flavours:
--
-- -- >>> L.fromPull $ singleton True -- True ::: VNil --singleton :: a -> Vec (S Z) a -- | Convert Vec to list. toList :: SNatI n => Vec n a -> [a] -- | Convert list [a] to Vec n a. Returns -- Nothing if lengths don't match exactly. -- --
-- >>> L.fromPull <$> fromList "foo" :: Maybe (L.Vec N.Nat3 Char)
-- Just ('f' ::: 'o' ::: 'o' ::: VNil)
--
--
-- -- >>> L.fromPull <$> fromList "quux" :: Maybe (L.Vec N.Nat3 Char) -- Nothing ---- --
-- >>> L.fromPull <$> fromList "xy" :: Maybe (L.Vec N.Nat3 Char) -- Nothing --fromList :: SNatI n => [a] -> Maybe (Vec n a) -- | Prism from list. _Vec :: SNatI n => Prism' [a] (Vec n a) -- | Convert list [a] to Vec n a. Returns -- Nothing if input list is too short. -- --
-- >>> L.fromPull <$> fromListPrefix "foo" :: Maybe (L.Vec N.Nat3 Char)
-- Just ('f' ::: 'o' ::: 'o' ::: VNil)
--
--
--
-- >>> L.fromPull <$> fromListPrefix "quux" :: Maybe (L.Vec N.Nat3 Char)
-- Just ('q' ::: 'u' ::: 'u' ::: VNil)
--
--
-- -- >>> L.fromPull <$> fromListPrefix "xy" :: Maybe (L.Vec N.Nat3 Char) -- Nothing --fromListPrefix :: SNatI n => [a] -> Maybe (Vec n a) -- | Reify any list [a] to Vec n a. -- --
-- >>> reifyList "foo" length -- 3 --reifyList :: [a] -> (forall n. InlineInduction n => Vec n a -> r) -> r -- | Indexing. (!) :: Vec n a -> Fin n -> a -- | Index lens. -- --
-- >>> ('a' L.::: 'b' L.::: 'c' L.::: L.VNil) ^. L._Pull . ix (F.S F.Z)
-- 'b'
--
--
--
-- >>> ('a' L.::: 'b' L.::: 'c' L.::: L.VNil) & L._Pull . ix (F.S F.Z) .~ 'x'
-- 'a' ::: 'x' ::: 'c' ::: VNil
--
ix :: Fin n -> Lens' (Vec n a) a
-- | Match on non-empty Vec.
--
-- Note: lens _Cons is a Prism. In fact,
-- Vec n a cannot have an instance of Cons as
-- types don't match.
_Cons :: Iso (Vec (S n) a) (Vec (S n) b) (a, Vec n a) (b, Vec n b)
-- | Head lens. Note: lens _head is a
-- Traversal'.
--
--
-- >>> ('a' L.::: 'b' L.::: 'c' L.::: L.VNil) ^. L._Pull . _head
-- 'a'
--
--
--
-- >>> ('a' L.::: 'b' L.::: 'c' L.::: L.VNil) & L._Pull . _head .~ 'x'
-- 'x' ::: 'b' ::: 'c' ::: VNil
--
_head :: Lens' (Vec (S n) a) a
-- | Head lens. Note: lens _head is a
-- Traversal'.
_tail :: Lens' (Vec (S n) a) (Vec n a)
-- | The first element of a Vec.
head :: Vec (S n) a -> a
-- | The elements after the head of a Vec.
tail :: Vec (S n) a -> Vec n a
-- | See Foldable.
foldMap :: (Monoid m, SNatI n) => (a -> m) -> Vec n a -> m
-- | See Foldable1.
foldMap1 :: (Semigroup s, SNatI n) => (a -> s) -> Vec (S n) a -> s
-- | See FoldableWithIndex.
ifoldMap :: (Monoid m, SNatI n) => (Fin n -> a -> m) -> Vec n a -> m
-- | There is no type-class for this :(
ifoldMap1 :: (Semigroup s, SNatI n) => (Fin (S n) -> a -> s) -> Vec (S n) a -> s
-- | Right fold.
foldr :: SNatI n => (a -> b -> b) -> b -> Vec n a -> b
-- | Right fold with an index.
ifoldr :: SNatI n => (Fin n -> a -> b -> b) -> b -> Vec n a -> b
-- | Strict left fold.
foldl' :: SNatI n => (b -> a -> b) -> b -> Vec n a -> b
-- | Yield the length of a Vec.
length :: forall n a. SNatI n => Vec n a -> Int
-- | Test whether a Vec is empty.
null :: forall n a. SNatI n => Vec n a -> Bool
-- | Strict sum.
sum :: (Num a, SNatI n) => Vec n a -> a
-- | Strict product.
product :: (Num a, SNatI n) => Vec n a -> a
-- | -- >>> over L._Pull (map not) (True L.::: False L.::: L.VNil) -- False ::: True ::: VNil --map :: (a -> b) -> Vec n a -> Vec n b -- |
-- >>> over L._Pull (imap (,)) ('a' L.::: 'b' L.::: 'c' L.::: L.VNil)
-- (0,'a') ::: (1,'b') ::: (2,'c') ::: VNil
--
imap :: (Fin n -> a -> b) -> Vec n a -> Vec n b
-- | Zip two Vecs with a function.
zipWith :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
-- | Zip two Vecs. with a function that also takes the elements'
-- indices.
izipWith :: (Fin n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
-- | Monadic bind.
bind :: Vec n a -> (a -> Vec n b) -> Vec n b
-- | Monadic join.
join :: Vec n (Vec n a) -> Vec n a
-- | Get all Fin n in a Vec n.
--
-- -- >>> L.fromPull (universe :: Vec N.Nat3 (Fin N.Nat3)) -- 0 ::: 1 ::: 2 ::: VNil --universe :: SNatI n => Vec n (Fin n) instance (GHC.Classes.Eq a, Data.Type.Nat.SNatI n) => GHC.Classes.Eq (Data.Vec.Pull.Vec n a) instance GHC.Base.Functor (Data.Vec.Pull.Vec n) instance Data.Type.Nat.SNatI n => Data.Foldable.Foldable (Data.Vec.Pull.Vec n) instance GHC.Base.Applicative (Data.Vec.Pull.Vec n) instance GHC.Base.Monad (Data.Vec.Pull.Vec n) instance Data.Distributive.Distributive (Data.Vec.Pull.Vec n) instance Data.Functor.Rep.Representable (Data.Vec.Pull.Vec n) instance Data.Semigroup.Semigroup a => Data.Semigroup.Semigroup (Data.Vec.Pull.Vec n a) instance GHC.Base.Monoid a => GHC.Base.Monoid (Data.Vec.Pull.Vec n a) instance n ~ 'Data.Nat.Z => Data.Boring.Boring (Data.Vec.Pull.Vec n a) instance Data.Functor.Bind.Class.Apply (Data.Vec.Pull.Vec n) instance Data.Functor.Bind.Class.Bind (Data.Vec.Pull.Vec n) instance Control.Lens.Indexed.FunctorWithIndex (Data.Fin.Fin n) (Data.Vec.Pull.Vec n) instance Data.Type.Nat.SNatI n => Control.Lens.Indexed.FoldableWithIndex (Data.Fin.Fin n) (Data.Vec.Pull.Vec n) -- | Lazy length-indexed list: Vec. module Data.Vec.Lazy -- | Vector, i.e. length-indexed list. data Vec (n :: Nat) a [VNil] :: Vec Z a [:::] :: a -> Vec n a -> Vec (S n) a -- | Empty Vec. empty :: Vec Z a -- | Vec with exactly one element. -- --
-- >>> singleton True -- True ::: VNil --singleton :: a -> Vec (S Z) a -- | O(n). Recover InlineInduction (and SNatI) -- dictionary from a Vec value. -- -- Example: reflect is constrained with SNatI n, -- but if we have a Vec n a, we can recover that -- dictionary: -- --
-- >>> let f :: forall n a. Vec n a -> N.Nat; f v = withDict v (N.reflect (Proxy :: Proxy n)) in f (True ::: VNil) -- 1 ---- -- Note: using InlineInduction will be suboptimal, as if -- GHC has no opportunity to optimise the code, the recusion won't be -- unfold. How bad such code will perform? I don't know, we'll need -- benchmarks. withDict :: Vec n a -> (InlineInduction n => r) -> r -- | Convert to pull Vec. toPull :: Vec n a -> Vec n a -- | Convert from pull Vec. fromPull :: forall n a. SNatI n => Vec n a -> Vec n a -- | An Iso from toPull and fromPull. _Pull :: SNatI n => Iso (Vec n a) (Vec n b) (Vec n a) (Vec n b) -- | Convert Vec to list. -- --
-- >>> toList $ 'f' ::: 'o' ::: 'o' ::: VNil -- "foo" --toList :: Vec n a -> [a] -- | Convert list [a] to Vec n a. Returns -- Nothing if lengths don't match exactly. -- --
-- >>> fromList "foo" :: Maybe (Vec N.Nat3 Char)
-- Just ('f' ::: 'o' ::: 'o' ::: VNil)
--
--
-- -- >>> fromList "quux" :: Maybe (Vec N.Nat3 Char) -- Nothing ---- --
-- >>> fromList "xy" :: Maybe (Vec N.Nat3 Char) -- Nothing --fromList :: SNatI n => [a] -> Maybe (Vec n a) -- | Prism from list. -- --
-- >>> "foo" ^? _Vec :: Maybe (Vec N.Nat3 Char)
-- Just ('f' ::: 'o' ::: 'o' ::: VNil)
--
--
-- -- >>> "foo" ^? _Vec :: Maybe (Vec N.Nat2 Char) -- Nothing ---- --
-- >>> _Vec # (True ::: False ::: VNil) -- [True,False] --_Vec :: SNatI n => Prism' [a] (Vec n a) -- | Convert list [a] to Vec n a. Returns -- Nothing if input list is too short. -- --
-- >>> fromListPrefix "foo" :: Maybe (Vec N.Nat3 Char)
-- Just ('f' ::: 'o' ::: 'o' ::: VNil)
--
--
--
-- >>> fromListPrefix "quux" :: Maybe (Vec N.Nat3 Char)
-- Just ('q' ::: 'u' ::: 'u' ::: VNil)
--
--
-- -- >>> fromListPrefix "xy" :: Maybe (Vec N.Nat3 Char) -- Nothing --fromListPrefix :: SNatI n => [a] -> Maybe (Vec n a) -- | Reify any list [a] to Vec n a. -- --
-- >>> reifyList "foo" length -- 3 --reifyList :: [a] -> (forall n. InlineInduction n => Vec n a -> r) -> r -- | Indexing. -- --
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) ! F.S F.Z
-- 'b'
--
(!) :: Vec n a -> Fin n -> a
-- | Index lens.
--
--
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) ^. ix (F.S F.Z)
-- 'b'
--
--
--
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) & ix (F.S F.Z) .~ 'x'
-- 'a' ::: 'x' ::: 'c' ::: VNil
--
ix :: Fin n -> Lens' (Vec n a) a
-- | Match on non-empty Vec.
--
-- Note: lens _Cons is a Prism. In fact,
-- Vec n a cannot have an instance of Cons as
-- types don't match.
_Cons :: Iso (Vec (S n) a) (Vec (S n) b) (a, Vec n a) (b, Vec n b)
-- | Head lens. Note: lens _head is a
-- Traversal'.
--
--
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) ^. _head
-- 'a'
--
--
--
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) & _head .~ 'x'
-- 'x' ::: 'b' ::: 'c' ::: VNil
--
_head :: Lens' (Vec (S n) a) a
-- | Head lens. Note: lens _head is a
-- Traversal'.
_tail :: Lens' (Vec (S n) a) (Vec n a)
-- | Cons an element in front of a Vec.
cons :: a -> Vec n a -> Vec (S n) a
-- | The first element of a Vec.
head :: Vec (S n) a -> a
-- | The elements after the head of a Vec.
tail :: Vec (S n) a -> Vec n a
-- | Append two Vec.
--
--
-- >>> ('a' ::: 'b' ::: VNil) ++ ('c' ::: 'd' ::: VNil)
-- 'a' ::: 'b' ::: 'c' ::: 'd' ::: VNil
--
(++) :: Vec n a -> Vec m a -> Vec (Plus n m) a
infixr 5 ++
-- | Split vector into two parts. Inverse of ++.
--
--
-- >>> split ('a' ::: 'b' ::: 'c' ::: VNil) :: (Vec N.Nat1 Char, Vec N.Nat2 Char)
-- ('a' ::: VNil,'b' ::: 'c' ::: VNil)
--
--
--
-- >>> uncurry (++) (split ('a' ::: 'b' ::: 'c' ::: VNil) :: (Vec N.Nat1 Char, Vec N.Nat2 Char))
-- 'a' ::: 'b' ::: 'c' ::: VNil
--
split :: SNatI n => Vec (Plus n m) a -> (Vec n a, Vec m a)
-- | Map over all the elements of a Vec and concatenate the
-- resulting Vecs.
--
--
-- >>> concatMap (\x -> x ::: x ::: VNil) ('a' ::: 'b' ::: VNil)
-- 'a' ::: 'a' ::: 'b' ::: 'b' ::: VNil
--
concatMap :: (a -> Vec m b) -> Vec n a -> Vec (Mult n m) b
-- | -- concatMap id --concat :: Vec n (Vec m a) -> Vec (Mult n m) a -- | Inverse of concat. -- --
-- >>> chunks <$> fromListPrefix [1..] :: Maybe (Vec N.Nat2 (Vec N.Nat3 Int)) -- Just ((1 ::: 2 ::: 3 ::: VNil) ::: (4 ::: 5 ::: 6 ::: VNil) ::: VNil) ---- --
-- >>> let idVec x = x :: Vec N.Nat2 (Vec N.Nat3 Int) -- -- >>> concat . idVec . chunks <$> fromListPrefix [1..] -- Just (1 ::: 2 ::: 3 ::: 4 ::: 5 ::: 6 ::: VNil) --chunks :: (SNatI n, SNatI m) => Vec (Mult n m) a -> Vec n (Vec m a) -- | See Foldable. foldMap :: Monoid m => (a -> m) -> Vec n a -> m -- | See Foldable1. foldMap1 :: Semigroup s => (a -> s) -> Vec (S n) a -> s -- | See FoldableWithIndex. ifoldMap :: Monoid m => (Fin n -> a -> m) -> Vec n a -> m -- | There is no type-class for this :( ifoldMap1 :: Semigroup s => (Fin (S n) -> a -> s) -> Vec (S n) a -> s -- | Right fold. foldr :: forall a b n. (a -> b -> b) -> b -> Vec n a -> b -- | Right fold with an index. ifoldr :: forall a b n. (Fin n -> a -> b -> b) -> b -> Vec n a -> b -- | Strict left fold. foldl' :: forall a b n. (b -> a -> b) -> b -> Vec n a -> b -- | Yield the length of a Vec. O(n) length :: Vec n a -> Int -- | Test whether a Vec is empty. O(1) null :: Vec n a -> Bool -- | Non-strict sum. sum :: Num a => Vec n a -> a -- | Non-strict product. product :: Num a => Vec n a -> a -- |
-- >>> map not $ True ::: False ::: VNil -- False ::: True ::: VNil --map :: (a -> b) -> Vec n a -> Vec n b -- |
-- >>> imap (,) $ 'a' ::: 'b' ::: 'c' ::: VNil -- (0,'a') ::: (1,'b') ::: (2,'c') ::: VNil --imap :: (Fin n -> a -> b) -> Vec n a -> Vec n b -- | Apply an action to every element of a Vec, yielding a -- Vec of results. traverse :: forall n f a b. Applicative f => (a -> f b) -> Vec n a -> f (Vec n b) -- | Apply an action to non-empty Vec, yielding a Vec of -- results. traverse1 :: forall n f a b. Apply f => (a -> f b) -> Vec (S n) a -> f (Vec (S n) b) -- | Apply an action to every element of a Vec and its index, -- yielding a Vec of results. itraverse :: Applicative f => (Fin n -> a -> f b) -> Vec n a -> f (Vec n b) -- | Apply an action to every element of a Vec and its index, -- ignoring the results. itraverse_ :: Applicative f => (Fin n -> a -> f b) -> Vec n a -> f () -- | Zip two Vecs with a function. zipWith :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c -- | Zip two Vecs. with a function that also takes the elements' -- indices. izipWith :: (Fin n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c -- | Monadic bind. bind :: Vec n a -> (a -> Vec n b) -> Vec n b -- | Monadic join. -- --
-- >>> join $ ('a' ::: 'b' ::: VNil) ::: ('c' ::: 'd' ::: VNil) ::: VNil
-- 'a' ::: 'd' ::: VNil
--
join :: Vec n (Vec n a) -> Vec n a
-- | Get all Fin n in a Vec n.
--
-- -- >>> universe :: Vec N.Nat3 (Fin N.Nat3) -- 0 ::: 1 ::: 2 ::: VNil --universe :: SNatI n => Vec n (Fin n) -- | Write functions on Vec. Use them with tuples. -- -- VecEach can be used to avoid "this function won't change the -- length of the list" in DSLs. -- -- bad: Instead of -- --
-- [x, y] <- badDslMagic ["foo", "bar"] -- list! ---- -- good: we can write -- --
-- (x, y) <- betterDslMagic ("foo", "bar") -- homogenic tuple!
--
--
-- where betterDslMagic can be defined using
-- traverseWithVec.
class Each s t a b => VecEach s t a b | s -> a, t -> b, s b -> t, t a -> s
mapWithVec :: VecEach s t a b => (forall n. InlineInduction n => Vec n a -> Vec n b) -> s -> t
traverseWithVec :: (VecEach s t a b, Applicative f) => (forall n. InlineInduction n => Vec n a -> f (Vec n b)) -> s -> f t
instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.Vec.Lazy.Vec n a)
instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.Vec.Lazy.Vec n a)
instance GHC.Show.Show a => GHC.Show.Show (Data.Vec.Lazy.Vec n a)
instance GHC.Base.Functor (Data.Vec.Lazy.Vec n)
instance Data.Foldable.Foldable (Data.Vec.Lazy.Vec n)
instance n ~ 'Data.Nat.S m => Data.Semigroup.Foldable.Class.Foldable1 (Data.Vec.Lazy.Vec n)
instance Data.Traversable.Traversable (Data.Vec.Lazy.Vec n)
instance n ~ 'Data.Nat.S m => Data.Semigroup.Traversable.Class.Traversable1 (Data.Vec.Lazy.Vec n)
instance Control.DeepSeq.NFData a => Control.DeepSeq.NFData (Data.Vec.Lazy.Vec n a)
instance Data.Hashable.Class.Hashable a => Data.Hashable.Class.Hashable (Data.Vec.Lazy.Vec n a)
instance Data.Type.Nat.SNatI n => GHC.Base.Applicative (Data.Vec.Lazy.Vec n)
instance Data.Type.Nat.SNatI n => GHC.Base.Monad (Data.Vec.Lazy.Vec n)
instance Data.Type.Nat.SNatI n => Data.Distributive.Distributive (Data.Vec.Lazy.Vec n)
instance Data.Type.Nat.SNatI n => Data.Functor.Rep.Representable (Data.Vec.Lazy.Vec n)
instance Data.Semigroup.Semigroup a => Data.Semigroup.Semigroup (Data.Vec.Lazy.Vec n a)
instance (GHC.Base.Monoid a, Data.Type.Nat.SNatI n) => GHC.Base.Monoid (Data.Vec.Lazy.Vec n a)
instance n ~ 'Data.Nat.Z => Data.Boring.Boring (Data.Vec.Lazy.Vec n a)
instance Data.Functor.Bind.Class.Apply (Data.Vec.Lazy.Vec n)
instance Data.Functor.Bind.Class.Bind (Data.Vec.Lazy.Vec n)
instance Control.Lens.Indexed.FunctorWithIndex (Data.Fin.Fin n) (Data.Vec.Lazy.Vec n)
instance Control.Lens.Indexed.FoldableWithIndex (Data.Fin.Fin n) (Data.Vec.Lazy.Vec n)
instance Control.Lens.Indexed.TraversableWithIndex (Data.Fin.Fin n) (Data.Vec.Lazy.Vec n)
instance Control.Lens.Each.Each (Data.Vec.Lazy.Vec n a) (Data.Vec.Lazy.Vec n b) a b
instance Control.Lens.At.Ixed (Data.Vec.Lazy.Vec n a)
instance Control.Lens.Tuple.Field1 (Data.Vec.Lazy.Vec ('Data.Nat.S n) a) (Data.Vec.Lazy.Vec ('Data.Nat.S n) a) a a
instance Control.Lens.Tuple.Field2 (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S n)) a) (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S n)) a) a a
instance Control.Lens.Tuple.Field3 (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n))) a) (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n))) a) a a
instance Control.Lens.Tuple.Field4 (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n)))) a) (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n)))) a) a a
instance Control.Lens.Tuple.Field5 (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n))))) a) (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n))))) a) a a
instance Control.Lens.Tuple.Field6 (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n)))))) a) (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n)))))) a) a a
instance Control.Lens.Tuple.Field7 (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n))))))) a) (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n))))))) a) a a
instance Control.Lens.Tuple.Field8 (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n)))))))) a) (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n)))))))) a) a a
instance Control.Lens.Tuple.Field9 (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n))))))))) a) (Data.Vec.Lazy.Vec ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S ('Data.Nat.S n))))))))) a) a a
instance (a ~ a', b ~ b') => Data.Vec.Lazy.VecEach (a, a') (b, b') a b
instance (a ~ a2, a ~ a3, b ~ b2, b ~ b3) => Data.Vec.Lazy.VecEach (a, a2, a3) (b, b2, b3) a b
instance (a ~ a2, a ~ a3, a ~ a4, b ~ b2, b ~ b3, b ~ b4) => Data.Vec.Lazy.VecEach (a, a2, a3, a4) (b, b2, b3, b4) a b
-- | A variant of Data.Vec.Lazy with functions written using
-- InlineInduction. The hypothesis is that these (goursive)
-- functions could be fully unrolled, if the Vec size n
-- is known at compile time.
--
-- The module has the same API as Data.Vec.Lazy (sans
-- withDict and foldl'). Note: instance methods
-- aren't changed, the Vec type is the same.
module Data.Vec.Lazy.Inline
-- | Vector, i.e. length-indexed list.
data Vec (n :: Nat) a
[VNil] :: Vec Z a
[:::] :: a -> Vec n a -> Vec (S n) a
-- | Empty Vec.
empty :: Vec Z a
-- | Vec with exactly one element.
--
-- -- >>> singleton True -- True ::: VNil --singleton :: a -> Vec (S Z) a -- | Convert to pull Vec. toPull :: forall n a. InlineInduction n => Vec n a -> Vec n a -- | Convert from pull Vec. fromPull :: forall n a. InlineInduction n => Vec n a -> Vec n a -- | An Iso from toPull and fromPull. _Pull :: InlineInduction n => Iso (Vec n a) (Vec n b) (Vec n a) (Vec n b) -- | Convert Vec to list. -- --
-- >>> toList $ 'f' ::: 'o' ::: 'o' ::: VNil -- "foo" --toList :: forall n a. InlineInduction n => Vec n a -> [a] -- | Convert list [a] to Vec n a. Returns -- Nothing if lengths don't match exactly. -- --
-- >>> fromList "foo" :: Maybe (Vec N.Nat3 Char)
-- Just ('f' ::: 'o' ::: 'o' ::: VNil)
--
--
-- -- >>> fromList "quux" :: Maybe (Vec N.Nat3 Char) -- Nothing ---- --
-- >>> fromList "xy" :: Maybe (Vec N.Nat3 Char) -- Nothing --fromList :: InlineInduction n => [a] -> Maybe (Vec n a) -- | Prism from list. -- --
-- >>> "foo" ^? _Vec :: Maybe (Vec N.Nat3 Char)
-- Just ('f' ::: 'o' ::: 'o' ::: VNil)
--
--
-- -- >>> "foo" ^? _Vec :: Maybe (Vec N.Nat2 Char) -- Nothing ---- --
-- >>> _Vec # (True ::: False ::: VNil) -- [True,False] --_Vec :: InlineInduction n => Prism' [a] (Vec n a) -- | Convert list [a] to Vec n a. Returns -- Nothing if input list is too short. -- --
-- >>> fromListPrefix "foo" :: Maybe (Vec N.Nat3 Char)
-- Just ('f' ::: 'o' ::: 'o' ::: VNil)
--
--
--
-- >>> fromListPrefix "quux" :: Maybe (Vec N.Nat3 Char)
-- Just ('q' ::: 'u' ::: 'u' ::: VNil)
--
--
-- -- >>> fromListPrefix "xy" :: Maybe (Vec N.Nat3 Char) -- Nothing --fromListPrefix :: InlineInduction n => [a] -> Maybe (Vec n a) -- | Reify any list [a] to Vec n a. -- --
-- >>> reifyList "foo" length -- 3 --reifyList :: [a] -> (forall n. InlineInduction n => Vec n a -> r) -> r -- | Indexing. -- --
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) ! F.S F.Z
-- 'b'
--
(!) :: InlineInduction n => Vec n a -> Fin n -> a
-- | Index lens.
--
--
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) ^. ix (F.S F.Z)
-- 'b'
--
--
--
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) & ix (F.S F.Z) .~ 'x'
-- 'a' ::: 'x' ::: 'c' ::: VNil
--
ix :: InlineInduction n => Fin n -> Lens' (Vec n a) a
-- | Match on non-empty Vec.
--
-- Note: lens _Cons is a Prism. In fact,
-- Vec n a cannot have an instance of Cons as
-- types don't match.
_Cons :: Iso (Vec (S n) a) (Vec (S n) b) (a, Vec n a) (b, Vec n b)
-- | Head lens. Note: lens _head is a
-- Traversal'.
--
--
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) ^. _head
-- 'a'
--
--
--
-- >>> ('a' ::: 'b' ::: 'c' ::: VNil) & _head .~ 'x'
-- 'x' ::: 'b' ::: 'c' ::: VNil
--
_head :: Lens' (Vec (S n) a) a
-- | Head lens. Note: lens _head is a
-- Traversal'.
_tail :: Lens' (Vec (S n) a) (Vec n a)
-- | Cons an element in front of a Vec.
cons :: a -> Vec n a -> Vec (S n) a
-- | The first element of a Vec.
head :: Vec (S n) a -> a
-- | The elements after the head of a Vec.
tail :: Vec (S n) a -> Vec n a
-- | Append two Vec.
--
--
-- >>> ('a' ::: 'b' ::: VNil) ++ ('c' ::: 'd' ::: VNil)
-- 'a' ::: 'b' ::: 'c' ::: 'd' ::: VNil
--
(++) :: forall n m a. InlineInduction n => Vec n a -> Vec m a -> Vec (Plus n m) a
infixr 5 ++
-- | Split vector into two parts. Inverse of ++.
--
--
-- >>> split ('a' ::: 'b' ::: 'c' ::: VNil) :: (Vec N.Nat1 Char, Vec N.Nat2 Char)
-- ('a' ::: VNil,'b' ::: 'c' ::: VNil)
--
--
--
-- >>> uncurry (++) (split ('a' ::: 'b' ::: 'c' ::: VNil) :: (Vec N.Nat1 Char, Vec N.Nat2 Char))
-- 'a' ::: 'b' ::: 'c' ::: VNil
--
split :: InlineInduction n => Vec (Plus n m) a -> (Vec n a, Vec m a)
-- | Map over all the elements of a Vec and concatenate the
-- resulting Vecs.
--
--
-- >>> concatMap (\x -> x ::: x ::: VNil) ('a' ::: 'b' ::: VNil)
-- 'a' ::: 'a' ::: 'b' ::: 'b' ::: VNil
--
concatMap :: forall a b n m. (InlineInduction m, InlineInduction n) => (a -> Vec m b) -> Vec n a -> Vec (Mult n m) b
-- | -- concatMap id --concat :: (InlineInduction m, InlineInduction n) => Vec n (Vec m a) -> Vec (Mult n m) a -- | Inverse of concat. -- --
-- >>> chunks <$> fromListPrefix [1..] :: Maybe (Vec N.Nat2 (Vec N.Nat3 Int)) -- Just ((1 ::: 2 ::: 3 ::: VNil) ::: (4 ::: 5 ::: 6 ::: VNil) ::: VNil) ---- --
-- >>> let idVec x = x :: Vec N.Nat2 (Vec N.Nat3 Int) -- -- >>> concat . idVec . chunks <$> fromListPrefix [1..] -- Just (1 ::: 2 ::: 3 ::: 4 ::: 5 ::: 6 ::: VNil) --chunks :: (InlineInduction n, InlineInduction m) => Vec (Mult n m) a -> Vec n (Vec m a) -- | See Foldable. foldMap :: (Monoid m, InlineInduction n) => (a -> m) -> Vec n a -> m -- | See Foldable1. foldMap1 :: forall s a n. (Semigroup s, InlineInduction n) => (a -> s) -> Vec (S n) a -> s -- | See FoldableWithIndex. ifoldMap :: forall a n m. (Monoid m, InlineInduction n) => (Fin n -> a -> m) -> Vec n a -> m -- | There is no type-class for this :( ifoldMap1 :: forall a n s. (Semigroup s, InlineInduction n) => (Fin (S n) -> a -> s) -> Vec (S n) a -> s -- | Right fold. foldr :: forall a b n. InlineInduction n => (a -> b -> b) -> b -> Vec n a -> b -- | Right fold with an index. ifoldr :: forall a b n. InlineInduction n => (Fin n -> a -> b -> b) -> b -> Vec n a -> b -- | Yield the length of a Vec. O(n) length :: forall n a. InlineInduction n => Vec n a -> Int -- | Test whether a Vec is empty. O(1) null :: Vec n a -> Bool -- | Non-strict sum. sum :: (Num a, InlineInduction n) => Vec n a -> a -- | Non-strict product. product :: (Num a, InlineInduction n) => Vec n a -> a -- |
-- >>> map not $ True ::: False ::: VNil -- False ::: True ::: VNil --map :: forall a b n. InlineInduction n => (a -> b) -> Vec n a -> Vec n b -- |
-- >>> imap (,) $ 'a' ::: 'b' ::: 'c' ::: VNil -- (0,'a') ::: (1,'b') ::: (2,'c') ::: VNil --imap :: InlineInduction n => (Fin n -> a -> b) -> Vec n a -> Vec n b -- | Apply an action to every element of a Vec, yielding a -- Vec of results. traverse :: forall n f a b. (Applicative f, InlineInduction n) => (a -> f b) -> Vec n a -> f (Vec n b) -- | Apply an action to non-empty Vec, yielding a Vec of -- results. traverse1 :: forall n f a b. (Apply f, InlineInduction n) => (a -> f b) -> Vec (S n) a -> f (Vec (S n) b) -- | Apply an action to every element of a Vec and its index, -- yielding a Vec of results. itraverse :: forall n f a b. (Applicative f, InlineInduction n) => (Fin n -> a -> f b) -> Vec n a -> f (Vec n b) -- | Apply an action to every element of a Vec and its index, -- ignoring the results. itraverse_ :: forall n f a b. (Applicative f, InlineInduction n) => (Fin n -> a -> f b) -> Vec n a -> f () -- | Zip two Vecs with a function. zipWith :: forall a b c n. InlineInduction n => (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c -- | Zip two Vecs. with a function that also takes the elements' -- indices. izipWith :: InlineInduction n => (Fin n -> a -> b -> c) -> Vec n a -> Vec n b -> Vec n c -- | Monadic bind. bind :: InlineInduction n => Vec n a -> (a -> Vec n b) -> Vec n b -- | Monadic join. -- --
-- >>> join $ ('a' ::: 'b' ::: VNil) ::: ('c' ::: 'd' ::: VNil) ::: VNil
-- 'a' ::: 'd' ::: VNil
--
join :: InlineInduction n => Vec n (Vec n a) -> Vec n a
-- | Get all Fin n in a Vec n.
--
-- -- >>> universe :: Vec N.Nat3 (Fin N.Nat3) -- 0 ::: 1 ::: 2 ::: VNil --universe :: InlineInduction n => Vec n (Fin n) -- | Write functions on Vec. Use them with tuples. -- -- VecEach can be used to avoid "this function won't change the -- length of the list" in DSLs. -- -- bad: Instead of -- --
-- [x, y] <- badDslMagic ["foo", "bar"] -- list! ---- -- good: we can write -- --
-- (x, y) <- betterDslMagic ("foo", "bar") -- homogenic tuple!
--
--
-- where betterDslMagic can be defined using
-- traverseWithVec.
class Each s t a b => VecEach s t a b | s -> a, t -> b, s b -> t, t a -> s
mapWithVec :: VecEach s t a b => (forall n. InlineInduction n => Vec n a -> Vec n b) -> s -> t
traverseWithVec :: (VecEach s t a b, Applicative f) => (forall n. InlineInduction n => Vec n a -> f (Vec n b)) -> s -> f t