{-# LANGUAGE Rank2Types, MultiParamTypeClasses, FlexibleContexts, TypeFamilies, ScopedTypeVariables #-} -- | -- Module : Data.Vector.Generic -- Copyright : (c) Roman Leshchinskiy 2008-2010 -- License : BSD-style -- -- Maintainer : Roman Leshchinskiy -- Stability : experimental -- Portability : non-portable -- -- Generic interface to pure vectors -- module Data.Vector.Generic ( -- * Immutable vectors Vector(..), Mutable, -- * Length information length, null, -- * Construction empty, singleton, cons, snoc, replicate, generate, (++), force, -- * Accessing individual elements (!), head, last, indexM, headM, lastM, unsafeIndex, unsafeHead, unsafeLast, unsafeIndexM, unsafeHeadM, unsafeLastM, -- * Subvectors slice, init, tail, take, drop, unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop, -- * Permutations accum, accumulate, accumulate_, (//), update, update_, backpermute, reverse, unsafeAccum, unsafeAccumulate, unsafeAccumulate_, unsafeUpd, unsafeUpdate, unsafeUpdate_, unsafeBackpermute, -- * Mapping map, imap, concatMap, -- * Zipping and unzipping zipWith, zipWith3, zipWith4, zipWith5, zipWith6, izipWith, izipWith3, izipWith4, izipWith5, izipWith6, zip, zip3, zip4, zip5, zip6, unzip, unzip3, unzip4, unzip5, unzip6, -- * Comparisons eq, cmp, -- * Filtering filter, ifilter, takeWhile, dropWhile, partition, unstablePartition, span, break, -- * Searching elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices, -- * Folding foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1', ifoldl, ifoldl', ifoldr, ifoldr', -- * Specialised folds all, any, and, or, sum, product, maximum, maximumBy, minimum, minimumBy, minIndex, minIndexBy, maxIndex, maxIndexBy, -- * Unfolding unfoldr, unfoldrN, -- * Scans prescanl, prescanl', postscanl, postscanl', scanl, scanl', scanl1, scanl1', prescanr, prescanr', postscanr, postscanr', scanr, scanr', scanr1, scanr1', -- * Enumeration enumFromN, enumFromStepN, enumFromTo, enumFromThenTo, -- * Conversion to/from lists toList, fromList, fromListN, -- * Monadic operations replicateM, mapM, mapM_, forM, forM_, zipWithM, zipWithM_, filterM, foldM, foldM', fold1M, fold1M', -- * Destructive operations create, modify, copy, unsafeCopy, -- * Conversion to/from Streams stream, unstream, streamR, unstreamR, -- * Recycling support new, clone, -- * Utilities for defining Data instances gfoldl, dataCast, mkType ) where import Data.Vector.Generic.Base import Data.Vector.Generic.Mutable ( MVector ) import qualified Data.Vector.Generic.Mutable as M import qualified Data.Vector.Generic.New as New import Data.Vector.Generic.New ( New ) import qualified Data.Vector.Fusion.Stream as Stream import Data.Vector.Fusion.Stream ( Stream, MStream, inplace ) import qualified Data.Vector.Fusion.Stream.Monadic as MStream import Data.Vector.Fusion.Stream.Size import Data.Vector.Fusion.Util import Control.Monad.ST ( ST, runST ) import Control.Monad.Primitive import qualified Control.Monad as Monad import Prelude hiding ( length, null, replicate, (++), head, last, init, tail, take, drop, reverse, map, concatMap, zipWith, zipWith3, zip, zip3, unzip, unzip3, filter, takeWhile, dropWhile, span, break, elem, notElem, foldl, foldl1, foldr, foldr1, all, any, and, or, sum, product, maximum, minimum, scanl, scanl1, scanr, scanr1, enumFromTo, enumFromThenTo, mapM, mapM_ ) import Data.Typeable ( Typeable1, gcast1 ) import Data.Data ( Data, DataType, mkNorepType ) #include "vector.h" -- Fusion -- ------ -- | Construct a pure vector from a monadic initialiser new :: Vector v a => New v a -> v a {-# INLINE_STREAM new #-} new m = m `seq` runST (unsafeFreeze =<< New.run m) clone :: Vector v a => v a -> New v a {-# INLINE_STREAM clone #-} clone v = v `seq` New.create ( do mv <- M.new (length v) unsafeCopy mv v return mv) -- | Convert a vector to a 'Stream' stream :: Vector v a => v a -> Stream a {-# INLINE_STREAM stream #-} stream v = v `seq` (Stream.unfoldr get 0 `Stream.sized` Exact n) where n = length v -- NOTE: the False case comes first in Core so making it the recursive one -- makes the code easier to read {-# INLINE get #-} get i | i >= n = Nothing | otherwise = case basicUnsafeIndexM v i of Box x -> Just (x, i+1) -- | Create a vector from a 'Stream' unstream :: Vector v a => Stream a -> v a {-# INLINE unstream #-} unstream s = new (New.unstream s) {-# RULES "stream/unstream [Vector]" forall s. stream (new (New.unstream s)) = s "New.unstream/stream [Vector]" forall v. New.unstream (stream v) = clone v "clone/new [Vector]" forall p. clone (new p) = p "inplace [Vector]" forall (f :: forall m. Monad m => MStream m a -> MStream m a) m. New.unstream (inplace f (stream (new m))) = New.transform f m "uninplace [Vector]" forall (f :: forall m. Monad m => MStream m a -> MStream m a) m. stream (new (New.transform f m)) = inplace f (stream (new m)) #-} -- | Convert a vector to a 'Stream' streamR :: Vector v a => v a -> Stream a {-# INLINE_STREAM streamR #-} streamR v = v `seq` (Stream.unfoldr get n `Stream.sized` Exact n) where n = length v {-# INLINE get #-} get 0 = Nothing get i = let i' = i-1 in case basicUnsafeIndexM v i' of Box x -> Just (x, i') -- | Create a vector from a 'Stream' unstreamR :: Vector v a => Stream a -> v a {-# INLINE unstreamR #-} unstreamR s = new (New.unstreamR s) {-# RULES "streamR/unstreamR [Vector]" forall s. streamR (new (New.unstreamR s)) = s "New.unstreamR/streamR/new [Vector]" forall p. New.unstreamR (streamR (new p)) = p "inplace right [Vector]" forall (f :: forall m. Monad m => MStream m a -> MStream m a) m. New.unstreamR (inplace f (streamR (new m))) = New.transformR f m "uninplace right [Vector]" forall (f :: forall m. Monad m => MStream m a -> MStream m a) m. streamR (new (New.transformR f m)) = inplace f (streamR (new m)) #-} -- Length -- ------ length :: Vector v a => v a -> Int {-# INLINE_STREAM length #-} length v = basicLength v {-# RULES "length/unstream [Vector]" forall s. length (new (New.unstream s)) = Stream.length s #-} null :: Vector v a => v a -> Bool {-# INLINE_STREAM null #-} null v = basicLength v == 0 {-# RULES "null/unstream [Vector]" forall s. null (new (New.unstream s)) = Stream.null s #-} -- Construction -- ------------ -- | Empty vector empty :: Vector v a => v a {-# INLINE empty #-} empty = unstream Stream.empty -- | Vector with exaclty one element singleton :: forall v a. Vector v a => a -> v a {-# INLINE singleton #-} singleton x = elemseq (undefined :: v a) x $ unstream (Stream.singleton x) -- | Vector of the given length with the given value in each position replicate :: forall v a. Vector v a => Int -> a -> v a {-# INLINE replicate #-} replicate n x = elemseq (undefined :: v a) x $ unstream $ Stream.replicate n x -- | Generate a vector of the given length by applying the function to each -- index generate :: Vector v a => Int -> (Int -> a) -> v a {-# INLINE generate #-} generate n f = unstream (Stream.generate n f) -- | Prepend an element cons :: forall v a. Vector v a => a -> v a -> v a {-# INLINE cons #-} cons x v = elemseq (undefined :: v a) x $ unstream $ Stream.cons x $ stream v -- | Append an element snoc :: forall v a. Vector v a => v a -> a -> v a {-# INLINE snoc #-} snoc v x = elemseq (undefined :: v a) x $ unstream $ Stream.snoc (stream v) x infixr 5 ++ -- | Concatenate two vectors (++) :: Vector v a => v a -> v a -> v a {-# INLINE (++) #-} v ++ w = unstream (stream v Stream.++ stream w) -- | Create a copy of a vector. Useful when dealing with slices. force :: Vector v a => v a -> v a {-# INLINE_STREAM force #-} force v = new (clone v) -- Accessing individual elements -- ----------------------------- -- | Indexing (!) :: Vector v a => v a -> Int -> a {-# INLINE_STREAM (!) #-} v ! i = BOUNDS_CHECK(checkIndex) "(!)" i (length v) $ unId (basicUnsafeIndexM v i) -- | First element head :: Vector v a => v a -> a {-# INLINE_STREAM head #-} head v = v ! 0 -- | Last element last :: Vector v a => v a -> a {-# INLINE_STREAM last #-} last v = v ! (length v - 1) -- | Unsafe indexing without bounds checking unsafeIndex :: Vector v a => v a -> Int -> a {-# INLINE_STREAM unsafeIndex #-} unsafeIndex v i = UNSAFE_CHECK(checkIndex) "unsafeIndex" i (length v) $ unId (basicUnsafeIndexM v i) -- | Yield the first element of a vector without checking if the vector is -- empty unsafeHead :: Vector v a => v a -> a {-# INLINE_STREAM unsafeHead #-} unsafeHead v = unsafeIndex v 0 -- | Yield the last element of a vector without checking if the vector is -- empty unsafeLast :: Vector v a => v a -> a {-# INLINE_STREAM unsafeLast #-} unsafeLast v = unsafeIndex v (length v - 1) {-# RULES "(!)/unstream [Vector]" forall i s. new (New.unstream s) ! i = s Stream.!! i "head/unstream [Vector]" forall s. head (new (New.unstream s)) = Stream.head s "last/unstream [Vector]" forall s. last (new (New.unstream s)) = Stream.last s "unsafeIndex/unstream [Vector]" forall i s. unsafeIndex (new (New.unstream s)) i = s Stream.!! i "unsafeHead/unstream [Vector]" forall s. unsafeHead (new (New.unstream s)) = Stream.head s "unsafeLast/unstream [Vector]" forall s. unsafeLast (new (New.unstream s)) = Stream.last s #-} -- | Monadic indexing which can be strict in the vector while remaining lazy in -- the element. indexM :: (Vector v a, Monad m) => v a -> Int -> m a {-# INLINE_STREAM indexM #-} indexM v i = BOUNDS_CHECK(checkIndex) "indexM" i (length v) $ basicUnsafeIndexM v i headM :: (Vector v a, Monad m) => v a -> m a {-# INLINE_STREAM headM #-} headM v = indexM v 0 lastM :: (Vector v a, Monad m) => v a -> m a {-# INLINE_STREAM lastM #-} lastM v = indexM v (length v - 1) -- | Unsafe monadic indexing without bounds checks unsafeIndexM :: (Vector v a, Monad m) => v a -> Int -> m a {-# INLINE_STREAM unsafeIndexM #-} unsafeIndexM v i = UNSAFE_CHECK(checkIndex) "unsafeIndexM" i (length v) $ basicUnsafeIndexM v i unsafeHeadM :: (Vector v a, Monad m) => v a -> m a {-# INLINE_STREAM unsafeHeadM #-} unsafeHeadM v = unsafeIndexM v 0 unsafeLastM :: (Vector v a, Monad m) => v a -> m a {-# INLINE_STREAM unsafeLastM #-} unsafeLastM v = unsafeIndexM v (length v - 1) -- FIXME: the rhs of these rules are lazy in the stream which is WRONG {- RULES "indexM/unstream [Vector]" forall v i s. indexM (new' v (New.unstream s)) i = return (s Stream.!! i) "headM/unstream [Vector]" forall v s. headM (new' v (New.unstream s)) = return (Stream.head s) "lastM/unstream [Vector]" forall v s. lastM (new' v (New.unstream s)) = return (Stream.last s) -} -- Subarrays -- --------- -- | Yield a part of the vector without copying it. slice :: Vector v a => Int -- ^ starting index -> Int -- ^ length -> v a -> v a {-# INLINE_STREAM slice #-} slice i n v = BOUNDS_CHECK(checkSlice) "slice" i n (length v) $ basicUnsafeSlice i n v -- | Yield all but the last element without copying. init :: Vector v a => v a -> v a {-# INLINE_STREAM init #-} init v = slice 0 (length v - 1) v -- | All but the first element (without copying). tail :: Vector v a => v a -> v a {-# INLINE_STREAM tail #-} tail v = slice 1 (length v - 1) v -- | Yield the first @n@ elements without copying. take :: Vector v a => Int -> v a -> v a {-# INLINE_STREAM take #-} take n v = unsafeSlice 0 (delay_inline min n' (length v)) v where n' = max n 0 -- | Yield all but the first @n@ elements without copying. drop :: Vector v a => Int -> v a -> v a {-# INLINE_STREAM drop #-} drop n v = unsafeSlice (delay_inline min n' len) (delay_inline max 0 (len - n')) v where n' = max n 0 len = length v -- | Unsafely yield a part of the vector without copying it and without -- performing bounds checks. unsafeSlice :: Vector v a => Int -- ^ starting index -> Int -- ^ length -> v a -> v a {-# INLINE_STREAM unsafeSlice #-} unsafeSlice i n v = UNSAFE_CHECK(checkSlice) "unsafeSlice" i n (length v) $ basicUnsafeSlice i n v unsafeInit :: Vector v a => v a -> v a {-# INLINE_STREAM unsafeInit #-} unsafeInit v = unsafeSlice 0 (length v - 1) v unsafeTail :: Vector v a => v a -> v a {-# INLINE_STREAM unsafeTail #-} unsafeTail v = unsafeSlice 1 (length v - 1) v unsafeTake :: Vector v a => Int -> v a -> v a {-# INLINE unsafeTake #-} unsafeTake n v = unsafeSlice 0 n v unsafeDrop :: Vector v a => Int -> v a -> v a {-# INLINE unsafeDrop #-} unsafeDrop n v = unsafeSlice n (length v - n) v {-# RULES "slice/new [Vector]" forall i n p. slice i n (new p) = new (New.slice i n p) "init/new [Vector]" forall p. init (new p) = new (New.init p) "tail/new [Vector]" forall p. tail (new p) = new (New.tail p) "take/new [Vector]" forall n p. take n (new p) = new (New.take n p) "drop/new [Vector]" forall n p. drop n (new p) = new (New.drop n p) "unsafeSlice/new [Vector]" forall i n p. unsafeSlice i n (new p) = new (New.unsafeSlice i n p) "unsafeInit/new [Vector]" forall p. unsafeInit (new p) = new (New.unsafeInit p) "unsafeTail/new [Vector]" forall p. unsafeTail (new p) = new (New.unsafeTail p) #-} -- Permutations -- ------------ unsafeAccum_stream :: Vector v a => (a -> b -> a) -> v a -> Stream (Int,b) -> v a {-# INLINE unsafeAccum_stream #-} unsafeAccum_stream f = modifyWithStream (M.unsafeAccum f) unsafeAccum :: Vector v a => (a -> b -> a) -> v a -> [(Int,b)] -> v a {-# INLINE unsafeAccum #-} unsafeAccum f v us = unsafeAccum_stream f v (Stream.fromList us) unsafeAccumulate :: (Vector v a, Vector v (Int, b)) => (a -> b -> a) -> v a -> v (Int,b) -> v a {-# INLINE unsafeAccumulate #-} unsafeAccumulate f v us = unsafeAccum_stream f v (stream us) unsafeAccumulate_ :: (Vector v a, Vector v Int, Vector v b) => (a -> b -> a) -> v a -> v Int -> v b -> v a {-# INLINE unsafeAccumulate_ #-} unsafeAccumulate_ f v is xs = unsafeAccum_stream f v (Stream.zipWith (,) (stream is) (stream xs)) accum_stream :: Vector v a => (a -> b -> a) -> v a -> Stream (Int,b) -> v a {-# INLINE accum_stream #-} accum_stream f = modifyWithStream (M.accum f) accum :: Vector v a => (a -> b -> a) -> v a -> [(Int,b)] -> v a {-# INLINE accum #-} accum f v us = accum_stream f v (Stream.fromList us) accumulate :: (Vector v a, Vector v (Int, b)) => (a -> b -> a) -> v a -> v (Int,b) -> v a {-# INLINE accumulate #-} accumulate f v us = accum_stream f v (stream us) accumulate_ :: (Vector v a, Vector v Int, Vector v b) => (a -> b -> a) -> v a -> v Int -> v b -> v a {-# INLINE accumulate_ #-} accumulate_ f v is xs = accum_stream f v (Stream.zipWith (,) (stream is) (stream xs)) unsafeUpdate_stream :: Vector v a => v a -> Stream (Int,a) -> v a {-# INLINE unsafeUpdate_stream #-} unsafeUpdate_stream = modifyWithStream M.unsafeUpdate unsafeUpd :: Vector v a => v a -> [(Int, a)] -> v a {-# INLINE unsafeUpd #-} unsafeUpd v us = unsafeUpdate_stream v (Stream.fromList us) unsafeUpdate :: (Vector v a, Vector v (Int, a)) => v a -> v (Int, a) -> v a {-# INLINE unsafeUpdate #-} unsafeUpdate v w = unsafeUpdate_stream v (stream w) unsafeUpdate_ :: (Vector v a, Vector v Int) => v a -> v Int -> v a -> v a {-# INLINE unsafeUpdate_ #-} unsafeUpdate_ v is w = unsafeUpdate_stream v (Stream.zipWith (,) (stream is) (stream w)) update_stream :: Vector v a => v a -> Stream (Int,a) -> v a {-# INLINE update_stream #-} update_stream = modifyWithStream M.update (//) :: Vector v a => v a -> [(Int, a)] -> v a {-# INLINE (//) #-} v // us = update_stream v (Stream.fromList us) update :: (Vector v a, Vector v (Int, a)) => v a -> v (Int, a) -> v a {-# INLINE update #-} update v w = update_stream v (stream w) update_ :: (Vector v a, Vector v Int) => v a -> v Int -> v a -> v a {-# INLINE update_ #-} update_ v is w = update_stream v (Stream.zipWith (,) (stream is) (stream w)) -- This somewhat non-intuitive definition ensures that the resulting vector -- does not retain references to the original one even if it is lazy in its -- elements. This would not be the case if we simply used -- -- backpermute v is = map (v!) is backpermute :: (Vector v a, Vector v Int) => v a -> v Int -> v a {-# INLINE backpermute #-} backpermute v is = seq v $ unstream $ Stream.unbox $ Stream.map (indexM v) $ stream is unsafeBackpermute :: (Vector v a, Vector v Int) => v a -> v Int -> v a {-# INLINE unsafeBackpermute #-} unsafeBackpermute v is = seq v $ unstream $ Stream.unbox $ Stream.map (unsafeIndexM v) $ stream is -- FIXME: make this fuse better, add support for recycling reverse :: (Vector v a) => v a -> v a {-# INLINE reverse #-} reverse = unstream . streamR -- Mapping -- ------- -- | Map a function over a vector map :: (Vector v a, Vector v b) => (a -> b) -> v a -> v b {-# INLINE map #-} map f = unstream . inplace (MStream.map f) . stream -- | Apply a function to every index/value pair imap :: (Vector v a, Vector v b) => (Int -> a -> b) -> v a -> v b {-# INLINE imap #-} imap f = unstream . inplace (MStream.map (uncurry f) . MStream.indexed) . stream concatMap :: (Vector v a, Vector v b) => (a -> v b) -> v a -> v b {-# INLINE concatMap #-} concatMap f = unstream . Stream.concatMap (stream . f) . stream -- Zipping/unzipping -- ----------------- -- | Zip two vectors with the given function. zipWith :: (Vector v a, Vector v b, Vector v c) => (a -> b -> c) -> v a -> v b -> v c {-# INLINE zipWith #-} zipWith f xs ys = unstream (Stream.zipWith f (stream xs) (stream ys)) -- | Zip three vectors with the given function. zipWith3 :: (Vector v a, Vector v b, Vector v c, Vector v d) => (a -> b -> c -> d) -> v a -> v b -> v c -> v d {-# INLINE zipWith3 #-} zipWith3 f as bs cs = unstream (Stream.zipWith3 f (stream as) (stream bs) (stream cs)) zipWith4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e) => (a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e {-# INLINE zipWith4 #-} zipWith4 f as bs cs ds = unstream (Stream.zipWith4 f (stream as) (stream bs) (stream cs) (stream ds)) zipWith5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e, Vector v f) => (a -> b -> c -> d -> e -> f) -> v a -> v b -> v c -> v d -> v e -> v f {-# INLINE zipWith5 #-} zipWith5 f as bs cs ds es = unstream (Stream.zipWith5 f (stream as) (stream bs) (stream cs) (stream ds) (stream es)) zipWith6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e, Vector v f, Vector v g) => (a -> b -> c -> d -> e -> f -> g) -> v a -> v b -> v c -> v d -> v e -> v f -> v g {-# INLINE zipWith6 #-} zipWith6 f as bs cs ds es fs = unstream (Stream.zipWith6 f (stream as) (stream bs) (stream cs) (stream ds) (stream es) (stream fs)) -- | Zip two vectors and their indices with the given function. izipWith :: (Vector v a, Vector v b, Vector v c) => (Int -> a -> b -> c) -> v a -> v b -> v c {-# INLINE izipWith #-} izipWith f xs ys = unstream (Stream.zipWith (uncurry f) (Stream.indexed (stream xs)) (stream ys)) -- | Zip three vectors and their indices with the given function. izipWith3 :: (Vector v a, Vector v b, Vector v c, Vector v d) => (Int -> a -> b -> c -> d) -> v a -> v b -> v c -> v d {-# INLINE izipWith3 #-} izipWith3 f as bs cs = unstream (Stream.zipWith3 (uncurry f) (Stream.indexed (stream as)) (stream bs) (stream cs)) izipWith4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e) => (Int -> a -> b -> c -> d -> e) -> v a -> v b -> v c -> v d -> v e {-# INLINE izipWith4 #-} izipWith4 f as bs cs ds = unstream (Stream.zipWith4 (uncurry f) (Stream.indexed (stream as)) (stream bs) (stream cs) (stream ds)) izipWith5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e, Vector v f) => (Int -> a -> b -> c -> d -> e -> f) -> v a -> v b -> v c -> v d -> v e -> v f {-# INLINE izipWith5 #-} izipWith5 f as bs cs ds es = unstream (Stream.zipWith5 (uncurry f) (Stream.indexed (stream as)) (stream bs) (stream cs) (stream ds) (stream es)) izipWith6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e, Vector v f, Vector v g) => (Int -> a -> b -> c -> d -> e -> f -> g) -> v a -> v b -> v c -> v d -> v e -> v f -> v g {-# INLINE izipWith6 #-} izipWith6 f as bs cs ds es fs = unstream (Stream.zipWith6 (uncurry f) (Stream.indexed (stream as)) (stream bs) (stream cs) (stream ds) (stream es) (stream fs)) zip :: (Vector v a, Vector v b, Vector v (a,b)) => v a -> v b -> v (a, b) {-# INLINE zip #-} zip = zipWith (,) zip3 :: (Vector v a, Vector v b, Vector v c, Vector v (a, b, c)) => v a -> v b -> v c -> v (a, b, c) {-# INLINE zip3 #-} zip3 = zipWith3 (,,) zip4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v (a, b, c, d)) => v a -> v b -> v c -> v d -> v (a, b, c, d) {-# INLINE zip4 #-} zip4 = zipWith4 (,,,) zip5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e, Vector v (a, b, c, d, e)) => v a -> v b -> v c -> v d -> v e -> v (a, b, c, d, e) {-# INLINE zip5 #-} zip5 = zipWith5 (,,,,) zip6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e, Vector v f, Vector v (a, b, c, d, e, f)) => v a -> v b -> v c -> v d -> v e -> v f -> v (a, b, c, d, e, f) {-# INLINE zip6 #-} zip6 = zipWith6 (,,,,,) unzip :: (Vector v a, Vector v b, Vector v (a,b)) => v (a, b) -> (v a, v b) {-# INLINE unzip #-} unzip xs = (map fst xs, map snd xs) unzip3 :: (Vector v a, Vector v b, Vector v c, Vector v (a, b, c)) => v (a, b, c) -> (v a, v b, v c) {-# INLINE unzip3 #-} unzip3 xs = (map (\(a, b, c) -> a) xs, map (\(a, b, c) -> b) xs, map (\(a, b, c) -> c) xs) unzip4 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v (a, b, c, d)) => v (a, b, c, d) -> (v a, v b, v c, v d) {-# INLINE unzip4 #-} unzip4 xs = (map (\(a, b, c, d) -> a) xs, map (\(a, b, c, d) -> b) xs, map (\(a, b, c, d) -> c) xs, map (\(a, b, c, d) -> d) xs) unzip5 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e, Vector v (a, b, c, d, e)) => v (a, b, c, d, e) -> (v a, v b, v c, v d, v e) {-# INLINE unzip5 #-} unzip5 xs = (map (\(a, b, c, d, e) -> a) xs, map (\(a, b, c, d, e) -> b) xs, map (\(a, b, c, d, e) -> c) xs, map (\(a, b, c, d, e) -> d) xs, map (\(a, b, c, d, e) -> e) xs) unzip6 :: (Vector v a, Vector v b, Vector v c, Vector v d, Vector v e, Vector v f, Vector v (a, b, c, d, e, f)) => v (a, b, c, d, e, f) -> (v a, v b, v c, v d, v e, v f) {-# INLINE unzip6 #-} unzip6 xs = (map (\(a, b, c, d, e, f) -> a) xs, map (\(a, b, c, d, e, f) -> b) xs, map (\(a, b, c, d, e, f) -> c) xs, map (\(a, b, c, d, e, f) -> d) xs, map (\(a, b, c, d, e, f) -> e) xs, map (\(a, b, c, d, e, f) -> f) xs) -- Comparisons -- ----------- eq :: (Vector v a, Eq a) => v a -> v a -> Bool {-# INLINE eq #-} xs `eq` ys = stream xs == stream ys cmp :: (Vector v a, Ord a) => v a -> v a -> Ordering {-# INLINE cmp #-} cmp xs ys = compare (stream xs) (stream ys) -- Filtering -- --------- -- | Drop elements that do not satisfy the predicate filter :: Vector v a => (a -> Bool) -> v a -> v a {-# INLINE filter #-} filter f = unstream . inplace (MStream.filter f) . stream -- | Drop elements that do not satisfy the predicate (applied to values and -- their indices) ifilter :: Vector v a => (Int -> a -> Bool) -> v a -> v a {-# INLINE ifilter #-} ifilter f = unstream . inplace (MStream.map snd . MStream.filter (uncurry f) . MStream.indexed) . stream -- | Yield the longest prefix of elements satisfying the predicate. takeWhile :: Vector v a => (a -> Bool) -> v a -> v a {-# INLINE takeWhile #-} takeWhile f = unstream . Stream.takeWhile f . stream -- | Drop the longest prefix of elements that satisfy the predicate. dropWhile :: Vector v a => (a -> Bool) -> v a -> v a {-# INLINE dropWhile #-} dropWhile f = unstream . Stream.dropWhile f . stream -- | Split the vector in two parts, the first one containing those elements -- that satisfy the predicate and the second one those that don't. The -- relative order of the elements is preserved at the cost of a (sometimes) -- reduced performance compared to 'unstablePartition'. partition :: Vector v a => (a -> Bool) -> v a -> (v a, v a) {-# INLINE partition #-} partition f = partition_stream f . stream -- FIXME: Make this inplace-fusible (look at how stable_partition is -- implemented in C++) partition_stream :: Vector v a => (a -> Bool) -> Stream a -> (v a, v a) {-# INLINE_STREAM partition_stream #-} partition_stream f s = s `seq` runST ( do (mv1,mv2) <- M.partitionStream f s v1 <- unsafeFreeze mv1 v2 <- unsafeFreeze mv2 return (v1,v2)) -- | Split the vector in two parts, the first one containing those elements -- that satisfy the predicate and the second one those that don't. The order -- of the elements is not preserved but the operation is often faster than -- 'partition'. unstablePartition :: Vector v a => (a -> Bool) -> v a -> (v a, v a) {-# INLINE unstablePartition #-} unstablePartition f = unstablePartition_stream f . stream unstablePartition_stream :: Vector v a => (a -> Bool) -> Stream a -> (v a, v a) {-# INLINE_STREAM unstablePartition_stream #-} unstablePartition_stream f s = s `seq` runST ( do (mv1,mv2) <- M.unstablePartitionStream f s v1 <- unsafeFreeze mv1 v2 <- unsafeFreeze mv2 return (v1,v2)) unstablePartition_new :: Vector v a => (a -> Bool) -> New v a -> (v a, v a) {-# INLINE_STREAM unstablePartition_new #-} unstablePartition_new f (New.New p) = runST ( do mv <- p i <- M.unstablePartition f mv v <- unsafeFreeze mv return (unsafeTake i v, unsafeDrop i v)) {-# RULES "unstablePartition" forall f p. unstablePartition_stream f (stream (new p)) = unstablePartition_new f p #-} -- FIXME: make span and break fusible -- | Split the vector into the longest prefix of elements that satisfy the -- predicate and the rest. span :: Vector v a => (a -> Bool) -> v a -> (v a, v a) {-# INLINE span #-} span f = break (not . f) -- | Split the vector into the longest prefix of elements that do not satisfy -- the predicate and the rest. break :: Vector v a => (a -> Bool) -> v a -> (v a, v a) {-# INLINE break #-} break f xs = case findIndex f xs of Just i -> (unsafeSlice 0 i xs, unsafeSlice i (length xs - i) xs) Nothing -> (xs, empty) -- Searching -- --------- infix 4 `elem` -- | Check whether the vector contains an element elem :: (Vector v a, Eq a) => a -> v a -> Bool {-# INLINE elem #-} elem x = Stream.elem x . stream infix 4 `notElem` -- | Inverse of `elem` notElem :: (Vector v a, Eq a) => a -> v a -> Bool {-# INLINE notElem #-} notElem x = Stream.notElem x . stream -- | Yield 'Just' the first element matching the predicate or 'Nothing' if no -- such element exists. find :: Vector v a => (a -> Bool) -> v a -> Maybe a {-# INLINE find #-} find f = Stream.find f . stream -- | Yield 'Just' the index of the first element matching the predicate or -- 'Nothing' if no such element exists. findIndex :: Vector v a => (a -> Bool) -> v a -> Maybe Int {-# INLINE findIndex #-} findIndex f = Stream.findIndex f . stream -- | Yield the indices of elements satisfying the predicate findIndices :: (Vector v a, Vector v Int) => (a -> Bool) -> v a -> v Int {-# INLINE findIndices #-} findIndices f = unstream . inplace (MStream.map fst . MStream.filter (f . snd) . MStream.indexed) . stream -- | Yield 'Just' the index of the first occurence of the given element or -- 'Nothing' if the vector does not contain the element elemIndex :: (Vector v a, Eq a) => a -> v a -> Maybe Int {-# INLINE elemIndex #-} elemIndex x = findIndex (x==) -- | Yield the indices of all occurences of the given element elemIndices :: (Vector v a, Vector v Int, Eq a) => a -> v a -> v Int {-# INLINE elemIndices #-} elemIndices x = findIndices (x==) -- Folding -- ------- -- | Left fold foldl :: Vector v b => (a -> b -> a) -> a -> v b -> a {-# INLINE foldl #-} foldl f z = Stream.foldl f z . stream -- | Left fold on non-empty vectors foldl1 :: Vector v a => (a -> a -> a) -> v a -> a {-# INLINE foldl1 #-} foldl1 f = Stream.foldl1 f . stream -- | Left fold with strict accumulator foldl' :: Vector v b => (a -> b -> a) -> a -> v b -> a {-# INLINE foldl' #-} foldl' f z = Stream.foldl' f z . stream -- | Left fold on non-empty vectors with strict accumulator foldl1' :: Vector v a => (a -> a -> a) -> v a -> a {-# INLINE foldl1' #-} foldl1' f = Stream.foldl1' f . stream -- | Right fold foldr :: Vector v a => (a -> b -> b) -> b -> v a -> b {-# INLINE foldr #-} foldr f z = Stream.foldr f z . stream -- | Right fold on non-empty vectors foldr1 :: Vector v a => (a -> a -> a) -> v a -> a {-# INLINE foldr1 #-} foldr1 f = Stream.foldr1 f . stream -- | Right fold with a strict accumulator foldr' :: Vector v a => (a -> b -> b) -> b -> v a -> b {-# INLINE foldr' #-} foldr' f z = Stream.foldl' (flip f) z . streamR -- | Right fold on non-empty vectors with strict accumulator foldr1' :: Vector v a => (a -> a -> a) -> v a -> a {-# INLINE foldr1' #-} foldr1' f = Stream.foldl1' (flip f) . streamR -- | Left fold (function applied to each element and its index) ifoldl :: Vector v b => (a -> Int -> b -> a) -> a -> v b -> a {-# INLINE ifoldl #-} ifoldl f z = Stream.foldl (uncurry . f) z . Stream.indexed . stream -- | Left fold with strict accumulator (function applied to each element and -- its index) ifoldl' :: Vector v b => (a -> Int -> b -> a) -> a -> v b -> a {-# INLINE ifoldl' #-} ifoldl' f z = Stream.foldl' (uncurry . f) z . Stream.indexed . stream -- | Right fold (function applied to each element and its index) ifoldr :: Vector v a => (Int -> a -> b -> b) -> b -> v a -> b {-# INLINE ifoldr #-} ifoldr f z = Stream.foldr (uncurry f) z . Stream.indexed . stream -- | Right fold with strict accumulator (function applied to each element and -- its index) ifoldr' :: Vector v a => (Int -> a -> b -> b) -> b -> v a -> b {-# INLINE ifoldr' #-} ifoldr' f z xs = Stream.foldl' (flip (uncurry f)) z $ Stream.indexedR (length xs) $ streamR xs -- Specialised folds -- ----------------- all :: Vector v a => (a -> Bool) -> v a -> Bool {-# INLINE all #-} all f = Stream.and . Stream.map f . stream any :: Vector v a => (a -> Bool) -> v a -> Bool {-# INLINE any #-} any f = Stream.or . Stream.map f . stream and :: Vector v Bool => v Bool -> Bool {-# INLINE and #-} and = Stream.and . stream or :: Vector v Bool => v Bool -> Bool {-# INLINE or #-} or = Stream.or . stream sum :: (Vector v a, Num a) => v a -> a {-# INLINE sum #-} sum = Stream.foldl' (+) 0 . stream product :: (Vector v a, Num a) => v a -> a {-# INLINE product #-} product = Stream.foldl' (*) 1 . stream maximum :: (Vector v a, Ord a) => v a -> a {-# INLINE maximum #-} maximum = Stream.foldl1' max . stream maximumBy :: Vector v a => (a -> a -> Ordering) -> v a -> a {-# INLINE maximumBy #-} maximumBy cmp = Stream.foldl1' maxBy . stream where {-# INLINE maxBy #-} maxBy x y = case cmp x y of LT -> y _ -> x minimum :: (Vector v a, Ord a) => v a -> a {-# INLINE minimum #-} minimum = Stream.foldl1' min . stream minimumBy :: Vector v a => (a -> a -> Ordering) -> v a -> a {-# INLINE minimumBy #-} minimumBy cmp = Stream.foldl1' minBy . stream where {-# INLINE minBy #-} minBy x y = case cmp x y of GT -> y _ -> x maxIndex :: (Vector v a, Ord a) => v a -> Int {-# INLINE maxIndex #-} maxIndex = maxIndexBy compare maxIndexBy :: Vector v a => (a -> a -> Ordering) -> v a -> Int {-# INLINE maxIndexBy #-} maxIndexBy cmp = fst . Stream.foldl1' imax . Stream.indexed . stream where imax (i,x) (j,y) = case cmp x y of LT -> (j,y) _ -> (i,x) minIndex :: (Vector v a, Ord a) => v a -> Int {-# INLINE minIndex #-} minIndex = minIndexBy compare minIndexBy :: Vector v a => (a -> a -> Ordering) -> v a -> Int {-# INLINE minIndexBy #-} minIndexBy cmp = fst . Stream.foldl1' imin . Stream.indexed . stream where imin (i,x) (j,y) = case cmp x y of GT -> (j,y) _ -> (i,x) -- Unfolding -- --------- -- | Unfold unfoldr :: Vector v a => (b -> Maybe (a, b)) -> b -> v a {-# INLINE unfoldr #-} unfoldr f = unstream . Stream.unfoldr f -- | Unfoldr at most @n@ elements. unfoldrN :: Vector v a => Int -> (b -> Maybe (a, b)) -> b -> v a {-# INLINE unfoldrN #-} unfoldrN n f = unstream . Stream.unfoldrN n f -- Scans -- ----- -- | Prefix scan prescanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a {-# INLINE prescanl #-} prescanl f z = unstream . inplace (MStream.prescanl f z) . stream -- | Prefix scan with strict accumulator prescanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a {-# INLINE prescanl' #-} prescanl' f z = unstream . inplace (MStream.prescanl' f z) . stream -- | Suffix scan postscanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a {-# INLINE postscanl #-} postscanl f z = unstream . inplace (MStream.postscanl f z) . stream -- | Suffix scan with strict accumulator postscanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a {-# INLINE postscanl' #-} postscanl' f z = unstream . inplace (MStream.postscanl' f z) . stream -- | Haskell-style scan scanl :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a {-# INLINE scanl #-} scanl f z = unstream . Stream.scanl f z . stream -- | Haskell-style scan with strict accumulator scanl' :: (Vector v a, Vector v b) => (a -> b -> a) -> a -> v b -> v a {-# INLINE scanl' #-} scanl' f z = unstream . Stream.scanl' f z . stream -- | Scan over a non-empty vector scanl1 :: Vector v a => (a -> a -> a) -> v a -> v a {-# INLINE scanl1 #-} scanl1 f = unstream . inplace (MStream.scanl1 f) . stream -- | Scan over a non-empty vector with a strict accumulator scanl1' :: Vector v a => (a -> a -> a) -> v a -> v a {-# INLINE scanl1' #-} scanl1' f = unstream . inplace (MStream.scanl1' f) . stream -- | Prefix right-to-left scan prescanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b {-# INLINE prescanr #-} prescanr f z = unstreamR . inplace (MStream.prescanl (flip f) z) . streamR -- | Prefix right-to-left scan with strict accumulator prescanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b {-# INLINE prescanr' #-} prescanr' f z = unstreamR . inplace (MStream.prescanl' (flip f) z) . streamR -- | Suffix right-to-left scan postscanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b {-# INLINE postscanr #-} postscanr f z = unstreamR . inplace (MStream.postscanl (flip f) z) . streamR -- | Suffix right-to-left scan with strict accumulator postscanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b {-# INLINE postscanr' #-} postscanr' f z = unstreamR . inplace (MStream.postscanl' (flip f) z) . streamR -- | Haskell-style right-to-left scan scanr :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b {-# INLINE scanr #-} scanr f z = unstreamR . Stream.scanl (flip f) z . streamR -- | Haskell-style right-to-left scan with strict accumulator scanr' :: (Vector v a, Vector v b) => (a -> b -> b) -> b -> v a -> v b {-# INLINE scanr' #-} scanr' f z = unstreamR . Stream.scanl' (flip f) z . streamR -- | Right-to-left scan over a non-empty vector scanr1 :: Vector v a => (a -> a -> a) -> v a -> v a {-# INLINE scanr1 #-} scanr1 f = unstreamR . inplace (MStream.scanl1 (flip f)) . streamR -- | Right-to-left scan over a non-empty vector with a strict accumulator scanr1' :: Vector v a => (a -> a -> a) -> v a -> v a {-# INLINE scanr1' #-} scanr1' f = unstreamR . inplace (MStream.scanl1' (flip f)) . streamR -- Enumeration -- ----------- -- | Yield a vector of the given length containing the values @x@, @x+1@ etc. -- This operation is usually more efficient than 'enumFromTo'. enumFromN :: (Vector v a, Num a) => a -> Int -> v a {-# INLINE enumFromN #-} enumFromN x n = enumFromStepN x 1 n -- | Yield a vector of the given length containing the values @x@, @x+y@, -- @x+y+y@ etc. This operations is usually more efficient than -- 'enumFromThenTo'. enumFromStepN :: forall v a. (Vector v a, Num a) => a -> a -> Int -> v a {-# INLINE enumFromStepN #-} enumFromStepN x y n = elemseq (undefined :: v a) x $ elemseq (undefined :: v a) y $ unstream $ Stream.enumFromStepN x y n -- | Enumerate values from @x@ to @y@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromN' instead. enumFromTo :: (Vector v a, Enum a) => a -> a -> v a {-# INLINE enumFromTo #-} enumFromTo x y = unstream (Stream.enumFromTo x y) -- | Enumerate values from @x@ to @y@ with a specific step @z@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromStepN' instead. enumFromThenTo :: (Vector v a, Enum a) => a -> a -> a -> v a {-# INLINE enumFromThenTo #-} enumFromThenTo x y z = unstream (Stream.enumFromThenTo x y z) -- Conversion to/from lists -- ------------------------ -- | Convert a vector to a list toList :: Vector v a => v a -> [a] {-# INLINE toList #-} toList = Stream.toList . stream -- | Convert a list to a vector fromList :: Vector v a => [a] -> v a {-# INLINE fromList #-} fromList = unstream . Stream.fromList -- | Convert the first @n@ elements of a list to a vector -- -- > fromListN n xs = fromList (take n xs) fromListN :: Vector v a => Int -> [a] -> v a {-# INLINE fromListN #-} fromListN n = unstream . Stream.fromListN n unstreamM :: (Vector v a, Monad m) => MStream m a -> m (v a) {-# INLINE_STREAM unstreamM #-} unstreamM s = do xs <- MStream.toList s return $ unstream $ Stream.unsafeFromList (MStream.size s) xs -- Monadic operations -- ------------------ -- FIXME: specialise various combinators for ST and IO? -- | Perform the monadic action the given number of times and store the -- results in a vector. replicateM :: (Monad m, Vector v a) => Int -> m a -> m (v a) {-# INLINE replicateM #-} replicateM n m = fromListN n `Monad.liftM` Monad.replicateM n m -- | Apply the monadic action to all elements of the vector, yielding a vector -- of results mapM :: (Monad m, Vector v a, Vector v b) => (a -> m b) -> v a -> m (v b) {-# INLINE mapM #-} mapM f = unstreamM . Stream.mapM f . stream -- | Apply the monadic action to all elements of a vector and ignore the -- results mapM_ :: (Monad m, Vector v a) => (a -> m b) -> v a -> m () {-# INLINE mapM_ #-} mapM_ f = Stream.mapM_ f . stream -- | Apply the monadic action to all elements of the vector, yielding a vector -- of results forM :: (Monad m, Vector v a, Vector v b) => v a -> (a -> m b) -> m (v b) {-# INLINE forM #-} forM as f = mapM f as -- | Apply the monadic action to all elements of a vector and ignore the -- results forM_ :: (Monad m, Vector v a) => v a -> (a -> m b) -> m () {-# INLINE forM_ #-} forM_ as f = mapM_ f as -- | Zip the two vectors with the monadic action and yield a vector of results zipWithM :: (Monad m, Vector v a, Vector v b, Vector v c) => (a -> b -> m c) -> v a -> v b -> m (v c) {-# INLINE zipWithM #-} zipWithM f as bs = unstreamM $ Stream.zipWithM f (stream as) (stream bs) -- | Zip the two vectors with the monadic action and ignore the results zipWithM_ :: (Monad m, Vector v a, Vector v b) => (a -> b -> m c) -> v a -> v b -> m () {-# INLINE zipWithM_ #-} zipWithM_ f as bs = Stream.zipWithM_ f (stream as) (stream bs) -- | Drop elements that do not satisfy the monadic predicate filterM :: (Monad m, Vector v a) => (a -> m Bool) -> v a -> m (v a) {-# INLINE filterM #-} filterM f = unstreamM . Stream.filterM f . stream -- | Monadic fold foldM :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m a {-# INLINE foldM #-} foldM m z = Stream.foldM m z . stream -- | Monadic fold over non-empty vectors fold1M :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m a {-# INLINE fold1M #-} fold1M m = Stream.fold1M m . stream -- | Monadic fold with strict accumulator foldM' :: (Monad m, Vector v b) => (a -> b -> m a) -> a -> v b -> m a {-# INLINE foldM' #-} foldM' m z = Stream.foldM' m z . stream -- | Monad fold over non-empty vectors with strict accumulator fold1M' :: (Monad m, Vector v a) => (a -> a -> m a) -> v a -> m a {-# INLINE fold1M' #-} fold1M' m = Stream.fold1M' m . stream -- Destructive operations -- ---------------------- -- | Destructively initialise a vector. create :: Vector v a => (forall s. ST s (Mutable v s a)) -> v a {-# INLINE create #-} create p = new (New.create p) -- | Apply a destructive operation to a vector. The operation modifies a -- copy of the vector unless it can be safely performed in place. modify :: Vector v a => (forall s. Mutable v s a -> ST s ()) -> v a -> v a {-# INLINE modify #-} modify p = new . New.modify p . clone -- We have to make sure that this is strict in the stream but we can't seq on -- it while fusion is happening. Hence this ugliness. modifyWithStream :: Vector v a => (forall s. Mutable v s a -> Stream b -> ST s ()) -> v a -> Stream b -> v a {-# INLINE modifyWithStream #-} modifyWithStream p v s = new (New.modifyWithStream p (clone v) s) -- | Copy an immutable vector into a mutable one. The two vectors must have -- the same length. This is not checked. unsafeCopy :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> v a -> m () {-# INLINE unsafeCopy #-} unsafeCopy dst src = UNSAFE_CHECK(check) "unsafeCopy" "length mismatch" (M.length dst == length src) $ (dst `seq` src `seq` basicUnsafeCopy dst src) -- | Copy an immutable vector into a mutable one. The two vectors must have the -- same length. copy :: (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> v a -> m () {-# INLINE copy #-} copy dst src = BOUNDS_CHECK(check) "copy" "length mismatch" (M.length dst == length src) $ unsafeCopy dst src -- Utilities for defining Data instances -- ------------------------------------- -- | Generic definion of 'Data.Data.gfoldl' that views a 'Vector' as a -- list. gfoldl :: (Vector v a, Data a) => (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> v a -> c (v a) {-# INLINE gfoldl #-} gfoldl f z v = z fromList `f` toList v mkType :: String -> DataType {-# INLINE mkType #-} mkType = mkNorepType dataCast :: (Vector v a, Data a, Typeable1 v, Typeable1 t) => (forall d. Data d => c (t d)) -> Maybe (c (v a)) {-# INLINE dataCast #-} dataCast f = gcast1 f