{-| Module : Verismith.Generate Description : Various useful generators. Copyright : (c) 2019, Yann Herklotz License : GPL-3 Maintainer : yann [at] yannherklotz [dot] com Stability : experimental Portability : POSIX Various useful generators. -} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TemplateHaskell #-} {-# OPTIONS_GHC -Wno-unused-imports #-} module Verismith.Generate ( -- * Generation methods procedural , proceduralIO , proceduralSrc , proceduralSrcIO , randomMod -- ** Generate Functions , largeNum , wireSize , range , genBitVec , binOp , unOp , constExprWithContext , exprSafeList , exprRecList , exprWithContext , makeIdentifier , nextPort , newPort , scopedExpr , contAssign , lvalFromPort , assignment , seqBlock , conditional , forLoop , statement , alwaysSeq , instantiate , modInst , modItem , constExpr , parameter , moduleDef -- ** Helpers , someI , probability , askProbability , resizePort , moduleName , evalRange , calcRange ) where import Control.Lens hiding (Context) import Control.Monad (replicateM) import Control.Monad.Reader import Control.Monad.State.Strict import Data.Foldable (fold) import Data.Functor.Foldable (cata) import Data.List (foldl', partition) import Data.Maybe (fromMaybe) import Data.Text (Text) import qualified Data.Text as T import Hedgehog (Gen, GenT, MonadGen) import qualified Hedgehog as Hog import qualified Hedgehog.Gen as Hog import qualified Hedgehog.Range as Hog import Verismith.Config import Verismith.Internal import Verismith.Verilog.AST import Verismith.Verilog.BitVec import Verismith.Verilog.Eval import Verismith.Verilog.Internal import Verismith.Verilog.Mutate data Context = Context { _variables :: [Port] , _parameters :: [Parameter] , _modules :: [ModDecl] , _nameCounter :: {-# UNPACK #-} !Int , _stmntDepth :: {-# UNPACK #-} !Int , _modDepth :: {-# UNPACK #-} !Int , _determinism :: !Bool } makeLenses ''Context type StateGen = ReaderT Config (GenT (State Context)) toId :: Int -> Identifier toId = Identifier . ("w" <>) . T.pack . show toPort :: (MonadGen m) => Identifier -> m Port toPort ident = do i <- range return $ wire i ident sumSize :: [Port] -> Range sumSize ps = sum $ ps ^.. traverse . portSize random :: (MonadGen m) => [Port] -> (Expr -> ContAssign) -> m ModItem random ctx fun = do expr <- Hog.sized (exprWithContext (ProbExpr 1 1 0 1 1 1 1 0 1 1) [] ctx) return . ModCA $ fun expr --randomAssigns :: [Identifier] -> [Gen ModItem] --randomAssigns ids = random ids . ContAssign <$> ids randomOrdAssigns :: (MonadGen m) => [Port] -> [Port] -> [m ModItem] randomOrdAssigns inp ids = snd $ foldr generate (inp, []) ids where generate cid (i, o) = (cid : i, random i (ContAssign (_portName cid)) : o) randomMod :: (MonadGen m) => Int -> Int -> m ModDecl randomMod inps total = do ident <- sequence $ toPort <$> ids x <- sequence $ randomOrdAssigns (start ident) (end ident) let inputs_ = take inps ident let other = drop inps ident let y = ModCA . ContAssign "y" . fold $ Id <$> drop inps ids let yport = [wire (sumSize other) "y"] return . declareMod other $ ModDecl "test_module" yport inputs_ (x ++ [y]) [] where ids = toId <$> [1 .. total] end = drop inps start = take inps -- | Converts a 'Port' to an 'LVal' by only keeping the 'Identifier' of the -- 'Port'. lvalFromPort :: Port -> LVal lvalFromPort (Port _ _ _ i) = RegId i -- | Returns the probability from the configuration. probability :: Config -> Probability probability c = c ^. configProbability -- | Gets the current probabilities from the 'State'. askProbability :: StateGen Probability askProbability = asks probability -- | Generates a random large number, which can also be negative. largeNum :: (MonadGen m) => m Int largeNum = Hog.int $ Hog.linear (-100) 100 -- | Generates a random size for a wire so that it is not too small and not too -- large. wireSize :: (MonadGen m) => m Int wireSize = Hog.int $ Hog.linear 2 100 -- | Generates a random range by using the 'wireSize' and 0 as the lower bound. range :: (MonadGen m) => m Range range = Range <$> fmap fromIntegral wireSize <*> pure 0 -- | Generate a random bit vector using 'largeNum'. genBitVec :: (MonadGen m) => m BitVec genBitVec = fmap fromIntegral largeNum -- | Return a random 'BinaryOperator'. This currently excludes 'BinDiv', -- 'BinMod' because they can take a long time to synthesis, and 'BinCEq', -- 'BinCNEq', because these are not synthesisable. 'BinPower' is also excluded -- because it can only be used in conjunction with base powers of 2 which is -- currently not enforced. binOp :: (MonadGen m) => m BinaryOperator binOp = Hog.element [ BinPlus , BinMinus , BinTimes -- , BinDiv -- , BinMod , BinEq , BinNEq -- , BinCEq -- , BinCNEq , BinLAnd , BinLOr , BinLT , BinLEq , BinGT , BinGEq , BinAnd , BinOr , BinXor , BinXNor , BinXNorInv -- , BinPower , BinLSL , BinLSR , BinASL , BinASR ] -- | Generate a random 'UnaryOperator'. unOp :: (MonadGen m) => m UnaryOperator unOp = Hog.element [ UnPlus , UnMinus , UnNot , UnLNot , UnAnd , UnNand , UnOr , UnNor , UnXor , UnNxor , UnNxorInv ] -- | Generate a random 'ConstExpr' by using the current context of 'Parameter'. constExprWithContext :: (MonadGen m) => [Parameter] -> ProbExpr -> Hog.Size -> m ConstExpr constExprWithContext ps prob size | size == 0 = Hog.frequency [ (prob ^. probExprNum, ConstNum <$> genBitVec) , ( if null ps then 0 else prob ^. probExprId , ParamId . view paramIdent <$> Hog.element ps ) ] | size > 0 = Hog.frequency [ (prob ^. probExprNum, ConstNum <$> genBitVec) , ( if null ps then 0 else prob ^. probExprId , ParamId . view paramIdent <$> Hog.element ps ) , (prob ^. probExprUnOp, ConstUnOp <$> unOp <*> subexpr 2) , ( prob ^. probExprBinOp , ConstBinOp <$> subexpr 2 <*> binOp <*> subexpr 2 ) , ( prob ^. probExprCond , ConstCond <$> subexpr 2 <*> subexpr 2 <*> subexpr 2 ) , ( prob ^. probExprConcat , ConstConcat <$> Hog.nonEmpty (Hog.linear 0 10) (subexpr 2) ) ] | otherwise = constExprWithContext ps prob 0 where subexpr y = constExprWithContext ps prob $ size `div` y -- | The list of safe 'Expr', meaning that these will not recurse and will end -- the 'Expr' generation. exprSafeList :: (MonadGen m) => ProbExpr -> [(Int, m Expr)] exprSafeList prob = [(prob ^. probExprNum, Number <$> genBitVec)] -- | List of 'Expr' that have the chance to recurse and will therefore not be -- used when the expression grows too large. exprRecList :: (MonadGen m) => ProbExpr -> (Hog.Size -> m Expr) -> [(Int, m Expr)] exprRecList prob subexpr = [ (prob ^. probExprNum, Number <$> genBitVec) , ( prob ^. probExprConcat , Concat <$> Hog.nonEmpty (Hog.linear 0 10) (subexpr 2) ) , (prob ^. probExprUnOp , UnOp <$> unOp <*> subexpr 2) , (prob ^. probExprStr, Str <$> Hog.text (Hog.linear 0 100) Hog.alphaNum) , (prob ^. probExprBinOp , BinOp <$> subexpr 2 <*> binOp <*> subexpr 2) , (prob ^. probExprCond , Cond <$> subexpr 2 <*> subexpr 2 <*> subexpr 2) , (prob ^. probExprSigned , Appl <$> pure "$signed" <*> subexpr 2) , (prob ^. probExprUnsigned, Appl <$> pure "$unsigned" <*> subexpr 2) ] -- | Select a random port from a list of ports and generate a safe bit selection -- for that port. rangeSelect :: (MonadGen m) => [Parameter] -> [Port] -> m Expr rangeSelect ps ports = do p <- Hog.element ports let s = calcRange ps (Just 32) $ _portSize p msb <- Hog.int (Hog.constantFrom (s `div` 2) 0 (s - 1)) lsb <- Hog.int (Hog.constantFrom (msb `div` 2) 0 msb) return . RangeSelect (_portName p) $ Range (fromIntegral msb) (fromIntegral lsb) -- | Generate a random expression from the 'Context' with a guarantee that it -- will terminate using the list of safe 'Expr'. exprWithContext :: (MonadGen m) => ProbExpr -> [Parameter] -> [Port] -> Hog.Size -> m Expr exprWithContext prob ps [] n | n == 0 = Hog.frequency $ exprSafeList prob | n > 0 = Hog.frequency $ exprRecList prob subexpr | otherwise = exprWithContext prob ps [] 0 where subexpr y = exprWithContext prob ps [] $ n `div` y exprWithContext prob ps l n | n == 0 = Hog.frequency $ (prob ^. probExprId, Id . fromPort <$> Hog.element l) : exprSafeList prob | n > 0 = Hog.frequency $ (prob ^. probExprId , Id . fromPort <$> Hog.element l) : (prob ^. probExprRangeSelect, rangeSelect ps l) : exprRecList prob subexpr | otherwise = exprWithContext prob ps l 0 where subexpr y = exprWithContext prob ps l $ n `div` y -- | Runs a 'StateGen' for a random number of times, limited by an 'Int' that is -- passed to it. someI :: Int -> StateGen a -> StateGen [a] someI m f = do amount <- Hog.int (Hog.linear 1 m) replicateM amount f -- | Make a new name with a prefix and the current nameCounter. The nameCounter -- is then increased so that the label is unique. makeIdentifier :: Text -> StateGen Identifier makeIdentifier prefix = do context <- get let ident = Identifier $ prefix <> showT (context ^. nameCounter) nameCounter += 1 return ident getPort' :: PortType -> Identifier -> [Port] -> StateGen Port getPort' pt i c = case filter portId c of x : _ -> return x [] -> newPort i pt where portId (Port pt' _ _ i') = i == i' && pt == pt' -- | Makes a new 'Identifier' and then checks if the 'Port' already exists, if -- it does the existant 'Port' is returned, otherwise a new port is created with -- 'newPort'. This is used subsequently in all the functions to create a port, -- in case a port with the same name was already created. This could be because -- the generation is currently in the other branch of an if-statement. nextPort :: Maybe Text -> PortType -> StateGen Port nextPort i pt = do context <- get ident <- makeIdentifier $ fromMaybe (T.toLower $ showT pt) i getPort' pt ident (_variables context) -- | Creates a new port based on the current name counter and adds it to the -- current context. newPort :: Identifier -> PortType -> StateGen Port newPort ident pt = do p <- Port pt <$> Hog.bool <*> range <*> pure ident variables %= (p :) return p -- | Generates an expression from variables that are currently in scope. scopedExpr :: StateGen Expr scopedExpr = do context <- get prob <- askProbability Hog.sized . exprWithContext (_probExpr prob) (_parameters context) $ _variables context -- | Generates a random continuous assignment and assigns it to a random wire -- that is created. contAssign :: StateGen ContAssign contAssign = do expr <- scopedExpr p <- nextPort Nothing Wire return $ ContAssign (p ^. portName) expr -- | Generate a random assignment and assign it to a random 'Reg'. assignment :: StateGen Assign assignment = do expr <- scopedExpr lval <- lvalFromPort <$> nextPort Nothing Reg return $ Assign lval Nothing expr -- | Generate a random 'Statement' safely, by also increasing the depth counter. seqBlock :: StateGen Statement seqBlock = do stmntDepth -= 1 tstat <- SeqBlock <$> someI 20 statement stmntDepth += 1 return tstat -- | Generate a random conditional 'Statement'. The nameCounter is reset between -- branches so that port names can be reused. This is safe because if a 'Port' -- is not reused, it is left at 0, as all the 'Reg' are initialised to 0 at the -- start. conditional :: StateGen Statement conditional = do expr <- scopedExpr nc <- _nameCounter <$> get tstat <- seqBlock nc' <- _nameCounter <$> get nameCounter .= nc fstat <- seqBlock nc'' <- _nameCounter <$> get nameCounter .= max nc' nc'' return $ CondStmnt expr (Just tstat) (Just fstat) -- | Generate a random for loop by creating a new variable name for the counter -- and then generating random statements in the body. forLoop :: StateGen Statement forLoop = do num <- Hog.int (Hog.linear 0 20) var <- lvalFromPort <$> nextPort (Just "forvar") Reg ForLoop (Assign var Nothing 0) (BinOp (varId var) BinLT $ fromIntegral num) (Assign var Nothing $ BinOp (varId var) BinPlus 1) <$> seqBlock where varId v = Id (v ^. regId) -- | Choose a 'Statement' to generate. statement :: StateGen Statement statement = do prob <- askProbability cont <- get let defProb i = prob ^. probStmnt . i Hog.frequency [ (defProb probStmntBlock , BlockAssign <$> assignment) , (defProb probStmntNonBlock , NonBlockAssign <$> assignment) , (onDepth cont (defProb probStmntCond), conditional) , (onDepth cont (defProb probStmntFor) , forLoop) ] where onDepth c n = if c ^. stmntDepth > 0 then n else 0 -- | Generate a sequential always block which is dependent on the clock. alwaysSeq :: StateGen ModItem alwaysSeq = Always . EventCtrl (EPosEdge "clk") . Just <$> seqBlock -- | Should resize a port that connects to a module port if the latter is -- larger. This should not cause any problems if the same net is used as input -- multiple times, and is resized multiple times, as it should only get larger. resizePort :: [Parameter] -> Identifier -> Range -> [Port] -> [Port] resizePort ps i ra = foldl' func [] where func l p@(Port t _ ri i') | i' == i && calc ri < calc ra = (p & portSize .~ ra) : l | otherwise = p : l calc = calcRange ps $ Just 64 -- | Instantiate a module, where the outputs are new nets that are created, and -- the inputs are taken from existing ports in the context. -- -- 1 is subtracted from the inputs for the length because the clock is not -- counted and is assumed to be there, this should be made nicer by filtering -- out the clock instead. I think that in general there should be a special -- representation for the clock. instantiate :: ModDecl -> StateGen ModItem instantiate (ModDecl i outP inP _ _) = do context <- get outs <- replicateM (length outP) (nextPort Nothing Wire) ins <- take (length inpFixed) <$> Hog.shuffle (context ^. variables) insLit <- replicateM (length inpFixed - length ins) (Number <$> genBitVec) mapM_ (uncurry process) . zip (ins ^.. traverse . portName) $ inpFixed ^.. traverse . portSize ident <- makeIdentifier "modinst" vs <- view variables <$> get Hog.choice [ return . ModInst i ident $ ModConn <$> (toE (outs <> clkPort <> ins) <> insLit) , ModInst i ident <$> Hog.shuffle (zipWith ModConnNamed (view portName <$> outP <> clkPort <> inpFixed) (toE (outs <> clkPort <> ins) <> insLit)) ] where toE ins = Id . view portName <$> ins (inpFixed, clkPort) = partition filterFunc inP filterFunc (Port _ _ _ n) | n == "clk" = False | otherwise = True process p r = do params <- view parameters <$> get variables %= resizePort params p r -- | Generates a module instance by also generating a new module if there are -- not enough modules currently in the context. It keeps generating new modules -- for every instance and for every level until either the deepest level is -- achieved, or the maximum number of modules are reached. -- -- If the maximum number of levels are reached, it will always pick an instance -- from the current context. The problem with this approach is that at the end -- there may be many more than the max amount of modules, as the modules are -- always set to empty when entering a new level. This is to fix recursive -- definitions of modules, which are not defined. -- -- One way to fix that is to also decrement the max modules for every level, -- depending on how many modules have already been generated. This would mean -- there would be moments when the module cannot generate a new instance but -- also not take a module from the current context. A fix for that may be to -- have a default definition of a simple module that is used instead. -- -- Another different way to handle this would be to have a probability of taking -- a module from a context or generating a new one. modInst :: StateGen ModItem modInst = do prob <- ask context <- get let maxMods = prob ^. configProperty . propMaxModules if length (context ^. modules) < maxMods then do let currMods = context ^. modules let params = context ^. parameters let vars = context ^. variables modules .= [] variables .= [] parameters .= [] modDepth -= 1 chosenMod <- moduleDef Nothing ncont <- get let genMods = ncont ^. modules modDepth += 1 parameters .= params variables .= vars modules .= chosenMod : currMods <> genMods instantiate chosenMod else Hog.element (context ^. modules) >>= instantiate -- | Generate a random module item. modItem :: StateGen ModItem modItem = do conf <- ask let prob = conf ^. configProbability context <- get let defProb i = prob ^. probModItem . i det <- Hog.frequency [ (conf ^. configProperty . propDeterminism, return True) , (conf ^. configProperty . propNonDeterminism, return False) ] determinism .= det Hog.frequency [ (defProb probModItemAssign , ModCA <$> contAssign) , (defProb probModItemSeqAlways, alwaysSeq) , ( if context ^. modDepth > 0 then defProb probModItemInst else 0 , modInst ) ] -- | Either return the 'Identifier' that was passed to it, or generate a new -- 'Identifier' based on the current 'nameCounter'. moduleName :: Maybe Identifier -> StateGen Identifier moduleName (Just t) = return t moduleName Nothing = makeIdentifier "module" -- | Generate a random 'ConstExpr' by using the current context of 'Parameters'. constExpr :: StateGen ConstExpr constExpr = do prob <- askProbability context <- get Hog.sized $ constExprWithContext (context ^. parameters) (prob ^. probExpr) -- | Generate a random 'Parameter' and assign it to a constant expression which -- it will be initialised to. The assumption is that this constant expression -- should always be able to be evaluated with the current context of parameters. parameter :: StateGen Parameter parameter = do ident <- makeIdentifier "param" cexpr <- constExpr let param = Parameter ident cexpr parameters %= (param :) return param -- | Evaluate a range to an integer, and cast it back to a range. evalRange :: [Parameter] -> Int -> Range -> Range evalRange ps n (Range l r) = Range (eval l) (eval r) where eval = ConstNum . cata (evaluateConst ps) . resize n -- | Calculate a range to an int by maybe resizing the ranges to a value. calcRange :: [Parameter] -> Maybe Int -> Range -> Int calcRange ps i (Range l r) = eval l - eval r + 1 where eval a = fromIntegral . cata (evaluateConst ps) $ maybe a (`resize` a) i -- | Filter out a port based on it's name instead of equality of the ports. This -- is because the ports might not be equal if the sizes are being updated. identElem :: Port -> [Port] -> Bool identElem p = elem (p ^. portName) . toListOf (traverse . portName) -- | Generates a module definition randomly. It always has one output port which -- is set to @y@. The size of @y@ is the total combination of all the locally -- defined wires, so that it correctly reflects the internal state of the -- module. moduleDef :: Maybe Identifier -> StateGen ModDecl moduleDef top = do name <- moduleName top portList <- Hog.list (Hog.linear 4 10) $ nextPort Nothing Wire mi <- Hog.list (Hog.linear 4 100) modItem ps <- Hog.list (Hog.linear 0 10) parameter context <- get config <- ask let (newPorts, local) = partition (`identElem` portList) $ _variables context let size = evalRange (_parameters context) 32 . sum $ local ^.. traverse . portSize let combine = config ^. configProperty . propCombine let clock = Port Wire False 1 "clk" let yport = if combine then Port Wire False 1 "y" else Port Wire False size "y" let comb = combineAssigns_ combine yport local return . declareMod local . ModDecl name [yport] (clock : newPorts) (comb : mi) $ ps -- | Procedural generation method for random Verilog. Uses internal 'Reader' and -- 'State' to keep track of the current Verilog code structure. procedural :: Text -> Config -> Gen Verilog procedural top config = do (mainMod, st) <- Hog.resize num $ runStateT (Hog.distributeT (runReaderT (moduleDef (Just $ Identifier top)) config)) context return . Verilog $ mainMod : st ^. modules where context = Context [] [] [] 0 (confProp propStmntDepth) (confProp propModDepth) True num = fromIntegral $ confProp propSize confProp i = config ^. configProperty . i -- | Samples the 'Gen' directly to generate random 'Verilog' using the 'Text' as -- the name of the main module and the configuration 'Config' to influence the -- generation. proceduralIO :: Text -> Config -> IO Verilog proceduralIO t = Hog.sample . procedural t -- | Given a 'Text' and a 'Config' will generate a 'SourceInfo' which has the -- top module set to the right name. proceduralSrc :: Text -> Config -> Gen SourceInfo proceduralSrc t c = SourceInfo t <$> procedural t c -- | Sampled and wrapped into a 'SourceInfo' with the given top module name. proceduralSrcIO :: Text -> Config -> IO SourceInfo proceduralSrcIO t c = SourceInfo t <$> proceduralIO t c