{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} -- | Types and functions to encode your data types to 'Json'. module Waargonaut.Encode ( -- * Encoder type Encoder , Encoder' , ObjEncoder , ObjEncoder' -- * Creation , encodeA , encodePureA , jsonEncoder , objEncoder -- * Runners , runPureEncoder , runEncoder , simpleEncodeNoSpaces , simplePureEncodeNoSpaces -- * Provided encoders , int , integral , scientific , bool , text , null , either , maybe , maybeOrNull , traversable , list , nonempty , mapToObj , json , prismE -- * Object encoder helpers , mapLikeObj , atKey , intAt , textAt , boolAt , traversableAt , listAt , nonemptyAt , encAt , keyValuesAsObj , onObj , keyValueTupleFoldable , extendObject , extendMapLikeObject , combineObjects -- * Encoders specialised to Identity , int' , integral' , scientific' , bool' , text' , null' , either' , maybe' , maybeOrNull' , traversable' , nonempty' , list' , atKey' , mapLikeObj' , mapToObj' , keyValuesAsObj' , json' , generaliseEncoder ) where import Control.Applicative (Applicative (..), (<$>)) import Control.Category (id, (.)) import Control.Lens (AReview, At, Index, IxValue, Prism', at, cons, review, ( # ), (?~), _Empty, _Wrapped) import qualified Control.Lens as L import Prelude (Bool, Int, Integral, Monad, fromIntegral, fst) import Data.Foldable (Foldable, foldr, foldrM) import Data.Function (const, flip, ($), (&)) import Data.Functor (Functor, fmap) import Data.Functor.Contravariant ((>$<)) import Data.Functor.Contravariant.Divisible (divide) import Data.Functor.Identity (Identity (..)) import Data.Traversable (Traversable, traverse) import Data.Either (Either) import qualified Data.Either as Either import Data.List.NonEmpty (NonEmpty) import Data.Maybe (Maybe) import qualified Data.Maybe as Maybe import Data.Scientific (Scientific) import Data.Monoid (Monoid, mempty) import Data.Semigroup (Semigroup) import qualified Data.ByteString.Builder as BB import Data.ByteString.Lazy (ByteString) import Data.Map (Map) import qualified Data.Map as Map import Data.Text (Text) import Waargonaut.Encode.Types (Encoder, Encoder', ObjEncoder, ObjEncoder', finaliseEncoding, generaliseEncoder, initialEncoding, jsonEncoder, objEncoder, runEncoder, runPureEncoder) import Waargonaut.Types (AsJType (..), JAssoc (..), JObject, Json, MapLikeObj (..), WS, textToJString, toMapLikeObj, wsRemover, _JNumberInt, _JNumberScientific) import Waargonaut.Types.Json (waargonautBuilder) -- | Create an 'Encoder'' for 'a' by providing a function from 'a -> f Json'. encodeA :: (a -> f Json) -> Encoder f a encodeA = jsonEncoder -- | As 'encodeA' but specialised to 'Identity' when the additional flexibility -- isn't needed. encodePureA :: (a -> Json) -> Encoder' a encodePureA f = encodeA (Identity . f) -- | Encode an @a@ directly to a 'ByteString' using the provided 'Encoder'. simpleEncodeNoSpaces :: Applicative f => Encoder f a -> a -> f ByteString simpleEncodeNoSpaces enc = fmap (BB.toLazyByteString . waargonautBuilder wsRemover) . runEncoder enc -- | As per 'simpleEncodeNoSpaces' but specialised the 'f' to 'Data.Functor.Identity' and remove it. simplePureEncodeNoSpaces :: Encoder Identity a -> a -> ByteString simplePureEncodeNoSpaces enc = runIdentity . simpleEncodeNoSpaces enc -- | 'Encoder'' for a Waargonaut 'Json' data structure json :: Applicative f => Encoder f Json json = encodeA pure -- Internal function for creating an 'Encoder' from an 'Control.Lens.AReview'. encToJsonNoSpaces :: ( Monoid t , Applicative f ) => AReview Json (b, t) -> (a -> b) -> Encoder f a encToJsonNoSpaces c f = encodeA (pure . review c . (,mempty) . f) -- | Build an 'Encoder' using a 'Control.Lens.Prism'' prismE :: Prism' a b -> Encoder f a -> Encoder f b prismE p e = L.review p >$< e -- | Encode an 'Int' int :: Applicative f => Encoder f Int int = encToJsonNoSpaces _JNum (_JNumberInt #) -- | Encode an 'Scientific' scientific :: Applicative f => Encoder f Scientific scientific = encToJsonNoSpaces _JNum (_JNumberScientific #) -- | Encode a numeric value of the typeclass 'Integral' integral :: (Applicative f, Integral n) => Encoder f n integral = encToJsonNoSpaces _JNum (review _JNumberScientific . fromIntegral) -- | Encode a 'Bool' bool :: Applicative f => Encoder f Bool bool = encToJsonNoSpaces _JBool id -- | Encode a 'Text' text :: Applicative f => Encoder f Text text = encToJsonNoSpaces _JStr textToJString -- | Encode an explicit 'null'. null :: Applicative f => Encoder f () null = encodeA $ const (pure $ _JNull # mempty) -- | Encode a 'Maybe' value, using the provided 'Encoder''s to handle the -- different choices. maybe :: Functor f => Encoder f () -> Encoder f a -> Encoder f (Maybe a) maybe encN = encodeA . Maybe.maybe (runEncoder encN ()) . runEncoder -- | Encode a 'Maybe a' to either 'Encoder a' or 'null' maybeOrNull :: Applicative f => Encoder f a -> Encoder f (Maybe a) maybeOrNull = maybe null -- | Encode an 'Either' value using the given 'Encoder's either :: Functor f => Encoder f a -> Encoder f b -> Encoder f (Either a b) either eA = encodeA . Either.either (runEncoder eA) . runEncoder -- | Encode some 'Traversable' of 'a' into a JSON array. traversable :: ( Applicative f , Traversable t ) => Encoder f a -> Encoder f (t a) traversable = encodeWithInner (\xs -> _JArr # (_Wrapped # foldr cons mempty xs, mempty)) -- | Encode a 'Map' in a JSON object. mapToObj :: Applicative f => Encoder f a -> (k -> Text) -> Encoder f (Map k a) mapToObj encodeVal kToText = let mapToCS = Map.foldrWithKey (\k v -> at (kToText k) ?~ v) (_Empty # ()) in encodeWithInner (\xs -> _JObj # (fromMapLikeObj $ mapToCS xs, mempty)) encodeVal -- | Encode a 'NonEmpty' list nonempty :: Applicative f => Encoder f a -> Encoder f (NonEmpty a) nonempty = traversable -- | Encode a list list :: Applicative f => Encoder f a -> Encoder f [a] list = traversable -- | As per 'json' but with the 'f' specialised to 'Data.Functor.Identity'. json' :: Encoder' Json json' = json -- | As per 'int' but with the 'f' specialised to 'Data.Functor.Identity'. int' :: Encoder' Int int' = int -- | As per 'integral' but with the 'f' specialised to 'Data.Functor.Identity'. integral' :: Integral n => Encoder' n integral' = integral -- | As per 'scientific' but with the 'f' specialised to 'Data.Functor.Identity'. scientific' :: Encoder' Scientific scientific' = scientific -- | As per 'bool' but with the 'f' specialised to 'Data.Functor.Identity'. bool' :: Encoder' Bool bool' = bool -- | As per 'text' but with the 'f' specialised to 'Data.Functor.Identity'. text' :: Encoder' Text text' = text -- | As per 'null' but with the 'f' specialised to 'Data.Functor.Identity'. null' :: Encoder' () null' = null -- | As per 'maybe' but with the 'f' specialised to 'Data.Functor.Identity'. maybe' :: Encoder' () -> Encoder' a -> Encoder' (Maybe a) maybe' = maybe -- | As per 'maybeOrNull' but with the 'f' specialised to 'Data.Functor.Identity'. maybeOrNull' :: Encoder' a -> Encoder' (Maybe a) maybeOrNull' = maybeOrNull -- | As per 'either' but with the 'f' specialised to 'Data.Functor.Identity'. either' :: Encoder' a -> Encoder' b -> Encoder' (Either a b) either' = either -- | As per 'nonempty' but with the 'f' specialised to 'Data.Functor.Identity'. nonempty' :: Encoder' a -> Encoder' (NonEmpty a) nonempty' = traversable -- | As per 'list' but with the 'f' specialised to 'Data.Functor.Identity'. list' :: Encoder' a -> Encoder' [a] list' = traversable -- | Encode some 'a' that is contained with another 't' structure. encodeWithInner :: ( Applicative f , Traversable t ) => (t Json -> Json) -> Encoder f a -> Encoder f (t a) encodeWithInner f g = jsonEncoder $ fmap f . traverse (runEncoder g) -- | As per 'traversable' but with the 'f' specialised to 'Data.Functor.Identity'. traversable' :: Traversable t => Encoder' a -> Encoder' (t a) traversable' = traversable -- | Using the given function to convert the 'k' type keys to a 'Text' value, -- encode a 'Map' as a JSON object. mapToObj' :: Encoder' a -> (k -> Text) -> Encoder' (Map k a) mapToObj' = mapToObj -- | When encoding a 'MapLikeObj', this function lets you encode a value at a specific key atKey :: ( At t , IxValue t ~ Json , Applicative f ) => Index t -> Encoder f a -> a -> t -> f t atKey k enc v t = (\v' -> t & at k ?~ v') <$> runEncoder enc v -- | Encode an 'a' at the given index on the JSON object. atKey' :: ( At t , IxValue t ~ Json ) => Index t -> Encoder' a -> a -> t -> t atKey' k enc v = at k ?~ runIdentity (runEncoder enc v) -- | Encode an 'Int' at the given 'Text' key. intAt :: Text -> Int -> MapLikeObj WS Json -> MapLikeObj WS Json intAt = flip atKey' int -- | Encode a 'Text' value at the given 'Text' key. textAt :: Text -> Text -> MapLikeObj WS Json -> MapLikeObj WS Json textAt = flip atKey' text -- | Encode a 'Bool' at the given 'Text' key. boolAt :: Text -> Bool -> MapLikeObj WS Json -> MapLikeObj WS Json boolAt = flip atKey' bool -- | Encode a 'Foldable' of 'a' at the given index on a JSON object. traversableAt :: ( At t , Traversable f , IxValue t ~ Json ) => Encoder' a -> Index t -> f a -> t -> t traversableAt enc = flip atKey' (traversable enc) -- | Encode a standard Haskell list at the given index on a JSON object. listAt :: ( At t , IxValue t ~ Json ) => Encoder' a -> Index t -> [a] -> t -> t listAt = traversableAt -- | Encode a 'NonEmpty' list at the given index on a JSON object. nonemptyAt :: ( At t , IxValue t ~ Json ) => Encoder' a -> Index t -> NonEmpty a -> t -> t nonemptyAt = traversableAt -- | Apply a function to update a 'MapLikeObj' and encode that as a JSON object. -- -- For example, given the following data type: -- -- @ -- data Image = Image -- { _imageW :: Int -- , _imageH :: Int -- , _imageTitle :: Text -- , _imageAnimated :: Bool -- , _imageIDs :: [Int] -- } -- @ -- -- We can use this function to create an encoder, composing the individual -- update functions to set the keys and values as desired. -- -- @ -- encodeImage :: Applicative f => Encoder f Image -- encodeImage = mapLikeObj $ \\img -> -- intAt \"Width\" (_imageW img) . -- ^ Set an 'Int' value at the \"Width\" key. -- intAt \"Height\" (_imageH img) . -- textAt \"Title\" (_imageTitle img) . -- boolAt \"Animated\" (_imageAnimated img) . -- arrayAt int \"IDs\" (_imageIDs img) -- ^ Set an @[Int]@ value at the \"IDs\" key. -- @ -- mapLikeObj :: ( AsJType Json ws a , Monoid ws , Semigroup ws , Applicative f ) => (i -> MapLikeObj ws a -> MapLikeObj ws a) -> Encoder f i mapLikeObj f = encodeA $ \a -> pure $ _JObj # (fromMapLikeObj $ f a (_Empty # ()), mempty) -- | As per 'mapLikeObj' but specialised for 'Identity' as the 'Applicative'. mapLikeObj' :: ( AsJType Json ws a , Semigroup ws , Monoid ws ) => (i -> MapLikeObj ws a -> MapLikeObj ws a) -> Encoder' i mapLikeObj' f = encodePureA $ \a -> _JObj # (fromMapLikeObj $ f a (_Empty # ()), mempty) -- | -- This function allows you to extend the fields on a JSON object created by a -- separate encoder. -- extendObject :: Functor f => ObjEncoder f a -> a -> (JObject WS Json -> JObject WS Json) -> f Json extendObject encA a f = finaliseEncoding encA . f <$> initialEncoding encA a -- | -- This function lets you extend the fields on a JSON object but enforces the -- uniqueness of the keys by working through the 'MapLikeObj' structure. -- -- This will keep the first occurence of each unique key in the map. So be sure -- to check your output. -- extendMapLikeObject :: Functor f => ObjEncoder f a -> a -> (MapLikeObj WS Json -> MapLikeObj WS Json) -> f Json extendMapLikeObject encA a f = finaliseEncoding encA . floopObj <$> initialEncoding encA a where floopObj = fromMapLikeObj . f . fst . toMapLikeObj -- | -- Given encoders for things that are represented in JSON as 'objects', and a -- way to get to the 'b' and 'c' from the 'a'. This function lets you create an -- encoder for 'a'. The two objects are combined to make one single JSON object. -- -- Given -- -- @ -- encodeFoo :: ObjEncoder f Foo -- encodeBar :: ObjEncoder f Bar -- -- and some wrapping type: -- data A = { _foo :: Foo, _bar :: Bar } -- @ -- -- We can use this function to utilise our already defined 'ObjEncoder' -- structures to give us an encoder for 'A': -- -- @ -- combineObjects (\aRecord -> (_foo aRecord, _bar aRecord)) encodeFoo encodeBar :: ObjEncoder f Bar -- @ -- combineObjects :: Applicative f => (a -> (b, c)) -> ObjEncoder f b -> ObjEncoder f c -> ObjEncoder f a combineObjects f eB eC = divide f eB eC -- | When encoding a JSON object that may contain duplicate keys, this function -- works the same as the 'atKey' function for 'MapLikeObj'. onObj :: Applicative f => Text -> b -> Encoder f b -> JObject WS Json -> f (JObject WS Json) onObj k b encB o = (\j -> o & _Wrapped L.%~ L.cons j) . JAssoc (textToJString k) mempty mempty <$> runEncoder encB b -- | Encode key value pairs as a JSON object, allowing duplicate keys. keyValuesAsObj :: ( Foldable g , Monad f ) => g (a -> JObject WS Json -> f (JObject WS Json)) -> Encoder f a keyValuesAsObj xs = encodeA $ \a -> (\v -> _JObj # (v,mempty)) <$> foldrM (\f -> f a) (_Empty # ()) xs -- | Encode some 'Data.Foldable.Foldable' of @(Text, a)@ as a JSON object. This permits duplicate -- keys. keyValueTupleFoldable :: ( Monad f , Foldable g ) => Encoder f a -> Encoder f (g (Text, a)) keyValueTupleFoldable eA = encodeA $ \xs -> (\v -> _JObj # (v,mempty)) <$> foldrM (\(k,v) o -> onObj k v eA o) (_Empty # ()) xs -- | As per 'keyValuesAsObj' but with the 'f' specialised to 'Identity'. keyValuesAsObj' :: ( Foldable g , Functor g ) => g (a -> JObject WS Json -> JObject WS Json) -> Encoder' a keyValuesAsObj' = keyValuesAsObj . fmap (\f a -> Identity . f a) -- | Using a given 'Encoder', encode a key value pair on the JSON object, using -- the accessor function to retrieve the value. encAt :: Applicative f => Encoder f b -> Text -> (a -> b) -> a -> JObject WS Json -> f (JObject WS Json) encAt e k f a = onObj k (f a) e