weierstrass-functions-0.1.3.0: Weierstrass Elliptic Functions
Safe HaskellSafe-Inferred
LanguageHaskell2010

Math.Weierstrass

Synopsis

Documentation

halfPeriods Source #

Arguments

:: Complex Double

g2

-> Complex Double

g3

-> (Complex Double, Complex Double)

omega1, omega2

Half-periods from elliptic invariants.

ellipticInvariants Source #

Arguments

:: Complex Double

omega1

-> Complex Double

omega2

-> (Complex Double, Complex Double)

g2, g3

Elliptic invariants from half-periods.

weierstrassP Source #

Arguments

:: Complex Double

z

-> Complex Double

elliptic invariant g2

-> Complex Double

elliptic invariant g3

-> Complex Double 

Weierstrass p-function

weierstrassPdash Source #

Arguments

:: Complex Double

z

-> Complex Double

elliptic invariant g2

-> Complex Double

elliptic invariant g3

-> Complex Double 

Derivative of Weierstrass p-function

weierstrassPinv Source #

Arguments

:: Complex Double

w

-> Complex Double

elliptic invariant g2

-> Complex Double

elliptic invariant g3

-> Complex Double 

Inverse of Weierstrass p-function

weierstrassSigma Source #

Arguments

:: Complex Double

z

-> Complex Double

elliptic invariant g2

-> Complex Double

elliptic invariant g3

-> Complex Double 

Weierstrass sigma function

weierstrassZeta Source #

Arguments

:: Complex Double

z

-> Complex Double

elliptic invariant g2

-> Complex Double

elliptic invariant g3

-> Complex Double 

Weierstrass zeta function