| Copyright | (c) Stéphane Laurent 2023 |
|---|---|
| License | BSD3 |
| Maintainer | laurent_step@outlook.fr |
| Safe Haskell | Safe-Inferred |
| Language | Haskell2010 |
Math.Weierstrass
Description
Provides some Weierstrass functions and related functions.
Synopsis
- halfPeriods :: Complex Double -> Complex Double -> (Complex Double, Complex Double)
- ellipticInvariants :: Complex Double -> Complex Double -> (Complex Double, Complex Double)
- weierstrassP :: Complex Double -> Complex Double -> Complex Double -> Complex Double
- weierstrassP' :: Complex Double -> Complex Double -> Complex Double -> Complex Double
- weierstrassPdash :: Complex Double -> Complex Double -> Complex Double -> Complex Double
- weierstrassPdash' :: Complex Double -> Complex Double -> Complex Double -> Complex Double
- weierstrassPinv :: Complex Double -> Complex Double -> Complex Double -> Complex Double
- weierstrassPinv' :: Complex Double -> Complex Double -> Complex Double -> Complex Double
- weierstrassSigma :: Complex Double -> Complex Double -> Complex Double -> Complex Double
- weierstrassSigma' :: Complex Double -> Complex Double -> Complex Double -> Complex Double
- weierstrassZeta :: Complex Double -> Complex Double -> Complex Double -> Complex Double
- weierstrassZeta' :: Complex Double -> Complex Double -> Complex Double -> Complex Double
Documentation
Half-periods from elliptic invariants.
Elliptic invariants from half-periods.
Arguments
| :: Complex Double | z |
| -> Complex Double | half-period omega1 |
| -> Complex Double | half-period omega2 |
| -> Complex Double |
Weierstrass p-function given the half-periods
Arguments
| :: Complex Double | z |
| -> Complex Double | elliptic invariant g2 |
| -> Complex Double | elliptic invariant g3 |
| -> Complex Double |
Weierstrass p-function given the elliptic invariants
Arguments
| :: Complex Double | z |
| -> Complex Double | half-period omega1 |
| -> Complex Double | half-period omega2 |
| -> Complex Double |
Derivative of Weierstrass p-function given the half-periods
Arguments
| :: Complex Double | z |
| -> Complex Double | elliptic invariant g2 |
| -> Complex Double | elliptic invariant g3 |
| -> Complex Double |
Derivative of Weierstrass p-function given the elliptic invariants
Arguments
| :: Complex Double | w |
| -> Complex Double | half-period omega1 |
| -> Complex Double | half-period omega2 |
| -> Complex Double |
Inverse of Weierstrass p-function given the half-periods
Arguments
| :: Complex Double | z |
| -> Complex Double | elliptic invariant g2 |
| -> Complex Double | elliptic invariant g3 |
| -> Complex Double |
Inverse of Weierstrass p-function given the elliptic invariants
Arguments
| :: Complex Double | z |
| -> Complex Double | half-period omega1 |
| -> Complex Double | half-period omega2 |
| -> Complex Double |
Weierstrass sigma function given the half-periods
Arguments
| :: Complex Double | z |
| -> Complex Double | elliptic invariant g2 |
| -> Complex Double | elliptic invariant g3 |
| -> Complex Double |
Weierstrass sigma function given the elliptic invariants