{-# OPTIONS_GHC -fno-warn-overlapping-patterns #-} {-# OPTIONS -fglasgow-exts -cpp #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# OPTIONS -fno-warn-incomplete-patterns -fno-warn-missing-signatures #-} module Text.RegExp.Parser ( parse ) where import Text.RegExp.Data ( eps, char, psym, anySym, alt, seq_, rep, rep1, opt, brep ) import Data.Char ( isSpace, toLower, isAlphaNum, isDigit ) import qualified Data.Array as Happy_Data_Array import qualified GHC.Exts as Happy_GHC_Exts -- parser produced by Happy Version 1.18.5 newtype HappyAbsSyn t4 = HappyAbsSyn HappyAny #if __GLASGOW_HASKELL__ >= 607 type HappyAny = Happy_GHC_Exts.Any #else type HappyAny = forall a . a #endif happyIn4 :: t4 -> (HappyAbsSyn t4) happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyIn4 #-} happyOut4 :: (HappyAbsSyn t4) -> t4 happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOut4 #-} happyInTok :: (Token) -> (HappyAbsSyn t4) happyInTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyInTok #-} happyOutTok :: (HappyAbsSyn t4) -> (Token) happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x {-# INLINE happyOutTok #-} happyActOffsets :: HappyAddr happyActOffsets = HappyA# "\x04\x00\x00\x00\xff\xff\x00\x00\x04\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x04\x00\x04\x00\x00\x00\x00\x00\x00\x00\x16\x00\x19\x00\x00\x00\x00\x00"# happyGotoOffsets :: HappyAddr happyGotoOffsets = HappyA# "\x13\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"# happyDefActions :: HappyAddr happyDefActions = HappyA# "\xfe\xff\x00\x00\x00\x00\xfd\xff\xfe\xff\xf5\xff\xf4\xff\x00\x00\xfc\xff\xfe\xff\xfe\xff\xf8\xff\xf7\xff\xf6\xff\xfa\xff\xfb\xff\xf9\xff"# happyCheck :: HappyAddr happyCheck = HappyA# "\xff\xff\x02\x00\x03\x00\x04\x00\xff\xff\x01\x00\x07\x00\x08\x00\x09\x00\x05\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x0a\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x00\x00\x06\x00\x07\x00\x08\x00\x09\x00\x02\x00\x03\x00\x04\x00\x02\x00\x03\x00\x07\x00\x08\x00\x09\x00\x07\x00\x08\x00\x09\x00\xff\xff\xff\xff\xff\xff"# happyTable :: HappyAddr happyTable = HappyA# "\x00\x00\x09\x00\x0a\x00\x0b\x00\x00\x00\x04\x00\x0c\x00\x0d\x00\x0e\x00\x05\x00\x0e\x00\xff\xff\x0f\x00\x07\x00\x06\x00\x07\x00\x09\x00\x0a\x00\x0b\x00\x02\x00\x11\x00\x0c\x00\x0d\x00\x0e\x00\x09\x00\x0a\x00\x0b\x00\x09\x00\x0a\x00\x0c\x00\x0d\x00\x0e\x00\x0c\x00\x0d\x00\x0e\x00\x00\x00\x00\x00\x00\x00"# happyReduceArr = Happy_Data_Array.array (1, 11) [ (1 , happyReduce_1), (2 , happyReduce_2), (3 , happyReduce_3), (4 , happyReduce_4), (5 , happyReduce_5), (6 , happyReduce_6), (7 , happyReduce_7), (8 , happyReduce_8), (9 , happyReduce_9), (10 , happyReduce_10), (11 , happyReduce_11) ] happy_n_terms = 13 :: Int happy_n_nonterms = 1 :: Int happyReduce_1 = happySpecReduce_0 0# happyReduction_1 happyReduction_1 = happyIn4 (eps ) happyReduce_2 = happySpecReduce_1 0# happyReduction_2 happyReduction_2 happy_x_1 = case happyOutTok happy_x_1 of { (Sym happy_var_1) -> happyIn4 (char happy_var_1 )} happyReduce_3 = happySpecReduce_2 0# happyReduction_3 happyReduction_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> happyIn4 (rep happy_var_1 )} happyReduce_4 = happySpecReduce_3 0# happyReduction_4 happyReduction_4 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> case happyOut4 happy_x_3 of { happy_var_3 -> happyIn4 (seq_ happy_var_1 happy_var_3 )}} happyReduce_5 = happySpecReduce_3 0# happyReduction_5 happyReduction_5 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> case happyOut4 happy_x_3 of { happy_var_3 -> happyIn4 (alt happy_var_1 happy_var_3 )}} happyReduce_6 = happySpecReduce_3 0# happyReduction_6 happyReduction_6 happy_x_3 happy_x_2 happy_x_1 = case happyOut4 happy_x_2 of { happy_var_2 -> happyIn4 (happy_var_2 )} happyReduce_7 = happySpecReduce_2 0# happyReduction_7 happyReduction_7 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> happyIn4 (rep1 happy_var_1 )} happyReduce_8 = happySpecReduce_2 0# happyReduction_8 happyReduction_8 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> happyIn4 (opt happy_var_1 )} happyReduce_9 = happySpecReduce_2 0# happyReduction_9 happyReduction_9 happy_x_2 happy_x_1 = case happyOut4 happy_x_1 of { happy_var_1 -> case happyOutTok happy_x_2 of { (Bnd happy_var_2) -> happyIn4 (brep happy_var_2 happy_var_1 )}} happyReduce_10 = happySpecReduce_1 0# happyReduction_10 happyReduction_10 happy_x_1 = case happyOutTok happy_x_1 of { (Cls happy_var_1) -> happyIn4 (uncurry psym happy_var_1 )} happyReduce_11 = happySpecReduce_1 0# happyReduction_11 happyReduction_11 happy_x_1 = happyIn4 (anySym ) happyNewToken action sts stk [] = happyDoAction 12# notHappyAtAll action sts stk [] happyNewToken action sts stk (tk:tks) = let cont i = happyDoAction i tk action sts stk tks in case tk of { Sym happy_dollar_dollar -> cont 1#; Ast -> cont 2#; Seq -> cont 3#; Bar -> cont 4#; L -> cont 5#; R -> cont 6#; Pls -> cont 7#; Que -> cont 8#; Bnd happy_dollar_dollar -> cont 9#; Cls happy_dollar_dollar -> cont 10#; Dot -> cont 11#; _ -> happyError' (tk:tks) } happyError_ tk tks = happyError' (tk:tks) newtype HappyIdentity a = HappyIdentity a happyIdentity = HappyIdentity happyRunIdentity (HappyIdentity a) = a instance Monad HappyIdentity where return = HappyIdentity (HappyIdentity p) >>= q = q p happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b happyThen = (>>=) happyReturn :: () => a -> HappyIdentity a happyReturn = (return) happyThen1 m k tks = (>>=) m (\a -> k a tks) happyReturn1 :: () => a -> b -> HappyIdentity a happyReturn1 = \a tks -> (return) a happyError' :: () => [(Token)] -> HappyIdentity a happyError' = HappyIdentity . parseError parseTokens tks = happyRunIdentity happySomeParser where happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x)) happySeq = happyDontSeq parse = parseTokens . scan data Token = Seq | Sym Char | Ast | Bar | L | R | Pls | Que | Bnd (Int,Int) | Cls (String,Char -> Bool) | Dot token :: Char -> Token token '*' = Ast token '|' = Bar token '(' = L token ')' = R token '?' = Que token '+' = Pls token '.' = Dot token c = Sym c scan :: String -> [Token] scan = insertSeqs . process insertSeqs :: [Token] -> [Token] insertSeqs [] = [] insertSeqs [t] = [t] insertSeqs (a:ts@(b:_)) | lseq a && rseq b = a : Seq : insertSeqs ts | otherwise = a : insertSeqs ts lseq :: Token -> Bool lseq Bar = False lseq L = False lseq _ = True rseq :: Token -> Bool rseq (Sym _) = True rseq L = True rseq (Cls _) = True rseq Dot = True rseq _ = False process :: String -> [Token] process [] = [] process ('\\':c:cs) = Cls (['\\',c],symClassPred c) : process cs process ('{':cs) = case reads cs of (n,'}':s1) : _ -> Bnd (n,n) : process s1 (n,',':s1) : _ -> case reads s1 of (m,'}':s2) : _ -> Bnd (n,m) : process s2 _ -> token '{' : process cs _ -> token '{' : process cs process ('[':'^':cs) = Cls (('[':'^':s),not.p) : process xs where (s,p,xs) = processCls cs process ('[' :cs) = Cls ('[':s,p) : process xs where (s,p,xs) = processCls cs process (c:cs) = token c : process cs processCls :: String -> (String, Char -> Bool, String) processCls [] = parseError [] processCls (']':cs) = ("]", const False, cs) processCls ('\\':c:cs) | isSymClassChar c = ('\\':c:s, \x -> symClassPred c x || p x, xs) where (s,p,xs) = processCls cs processCls ('\\':c:cs) = ('\\':c:s, \x -> x==c || p x, xs) where (s,p,xs) = processCls cs processCls (c:'-':e:cs) | e /= ']' = (c:'-':e:s, \d -> (c<=d && d<=e) || p d, xs) where (s,p,xs) = processCls cs processCls (c:cs) = (c:s, \b -> b==c || p b, xs) where (s,p,xs) = processCls cs isSymClassChar :: Char -> Bool isSymClassChar = (`elem`"wWdDsS") symClassPred :: Char -> Char -> Bool symClassPred 'w' = isWordChar symClassPred 'd' = isDigit symClassPred 's' = isSpace symClassPred 'W' = not . isWordChar symClassPred 'D' = not . isDigit symClassPred 'S' = not . isSpace symClassPred c = (c==) isWordChar :: Char -> Bool isWordChar c = c == '_' || isAlphaNum c parseError :: [Token] -> a parseError _ = error "cannot parse regular expression" {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} {-# LINE 1 "" #-} {-# LINE 1 "" #-} {-# LINE 1 "templates/GenericTemplate.hs" #-} -- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp {-# LINE 30 "templates/GenericTemplate.hs" #-} data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList {-# LINE 51 "templates/GenericTemplate.hs" #-} {-# LINE 61 "templates/GenericTemplate.hs" #-} {-# LINE 70 "templates/GenericTemplate.hs" #-} infixr 9 `HappyStk` data HappyStk a = HappyStk a (HappyStk a) ----------------------------------------------------------------------------- -- starting the parse happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll ----------------------------------------------------------------------------- -- Accepting the parse -- If the current token is 0#, it means we've just accepted a partial -- parse (a %partial parser). We must ignore the saved token on the top of -- the stack in this case. happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) = happyReturn1 ans happyAccept j tk st sts (HappyStk ans _) = (happyTcHack j (happyTcHack st)) (happyReturn1 ans) ----------------------------------------------------------------------------- -- Arrays only: do the next action happyDoAction i tk st = {- nothing -} case action of 0# -> {- nothing -} happyFail i tk st -1# -> {- nothing -} happyAccept i tk st n | (n Happy_GHC_Exts.<# (0# :: Happy_GHC_Exts.Int#)) -> {- nothing -} (happyReduceArr Happy_Data_Array.! rule) i tk st where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#)))))) n -> {- nothing -} happyShift new_state i tk st where !(new_state) = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) where !(off) = indexShortOffAddr happyActOffsets st !(off_i) = (off Happy_GHC_Exts.+# i) check = if (off_i Happy_GHC_Exts.>=# (0# :: Happy_GHC_Exts.Int#)) then (indexShortOffAddr happyCheck off_i Happy_GHC_Exts.==# i) else False !(action) | check = indexShortOffAddr happyTable off_i | otherwise = indexShortOffAddr happyDefActions st {-# LINE 130 "templates/GenericTemplate.hs" #-} indexShortOffAddr (HappyA# arr) off = Happy_GHC_Exts.narrow16Int# i where !i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low) !high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#))) !low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off')) !off' = off Happy_GHC_Exts.*# 2# data HappyAddr = HappyA# Happy_GHC_Exts.Addr# ----------------------------------------------------------------------------- -- HappyState data type (not arrays) {-# LINE 163 "templates/GenericTemplate.hs" #-} ----------------------------------------------------------------------------- -- Shifting a token happyShift new_state 0# tk st sts stk@(x `HappyStk` _) = let !(i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in -- trace "shifting the error token" $ happyDoAction i tk new_state (HappyCons (st) (sts)) (stk) happyShift new_state i tk st sts stk = happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk) -- happyReduce is specialised for the common cases. happySpecReduce_0 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_0 nt fn j tk st@((action)) sts stk = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk) happySpecReduce_1 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk') = let r = fn v1 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_2 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk') = let r = fn v1 v2 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happySpecReduce_3 i fn 0# tk st sts stk = happyFail 0# tk st sts stk happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk') = let r = fn v1 v2 v3 in happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk')) happyReduce k i fn 0# tk st sts stk = happyFail 0# tk st sts stk happyReduce k nt fn j tk st sts stk = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of sts1@((HappyCons (st1@(action)) (_))) -> let r = fn stk in -- it doesn't hurt to always seq here... happyDoSeq r (happyGoto nt j tk st1 sts1 r) happyMonadReduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonadReduce k nt fn j tk st sts stk = happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk)) where !(sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts)) drop_stk = happyDropStk k stk happyMonad2Reduce k nt fn 0# tk st sts stk = happyFail 0# tk st sts stk happyMonad2Reduce k nt fn j tk st sts stk = happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk)) where !(sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts)) drop_stk = happyDropStk k stk !(off) = indexShortOffAddr happyGotoOffsets st1 !(off_i) = (off Happy_GHC_Exts.+# nt) !(new_state) = indexShortOffAddr happyTable off_i happyDrop 0# l = l happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t happyDropStk 0# l = l happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs ----------------------------------------------------------------------------- -- Moving to a new state after a reduction happyGoto nt j tk st = {- nothing -} happyDoAction j tk new_state where !(off) = indexShortOffAddr happyGotoOffsets st !(off_i) = (off Happy_GHC_Exts.+# nt) !(new_state) = indexShortOffAddr happyTable off_i ----------------------------------------------------------------------------- -- Error recovery (0# is the error token) -- parse error if we are in recovery and we fail again happyFail 0# tk old_st _ stk = -- trace "failing" $ happyError_ tk {- We don't need state discarding for our restricted implementation of "error". In fact, it can cause some bogus parses, so I've disabled it for now --SDM -- discard a state happyFail 0# tk old_st (HappyCons ((action)) (sts)) (saved_tok `HappyStk` _ `HappyStk` stk) = -- trace ("discarding state, depth " ++ show (length stk)) $ happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk)) -} -- Enter error recovery: generate an error token, -- save the old token and carry on. happyFail i tk (action) sts stk = -- trace "entering error recovery" $ happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk) -- Internal happy errors: notHappyAtAll = error "Internal Happy error\n" ----------------------------------------------------------------------------- -- Hack to get the typechecker to accept our action functions happyTcHack :: Happy_GHC_Exts.Int# -> a -> a happyTcHack x y = y {-# INLINE happyTcHack #-} ----------------------------------------------------------------------------- -- Seq-ing. If the --strict flag is given, then Happy emits -- happySeq = happyDoSeq -- otherwise it emits -- happySeq = happyDontSeq happyDoSeq, happyDontSeq :: a -> b -> b happyDoSeq a b = a `seq` b happyDontSeq a b = b ----------------------------------------------------------------------------- -- Don't inline any functions from the template. GHC has a nasty habit -- of deciding to inline happyGoto everywhere, which increases the size of -- the generated parser quite a bit. {-# NOINLINE happyDoAction #-} {-# NOINLINE happyTable #-} {-# NOINLINE happyCheck #-} {-# NOINLINE happyActOffsets #-} {-# NOINLINE happyGotoOffsets #-} {-# NOINLINE happyDefActions #-} {-# NOINLINE happyShift #-} {-# NOINLINE happySpecReduce_0 #-} {-# NOINLINE happySpecReduce_1 #-} {-# NOINLINE happySpecReduce_2 #-} {-# NOINLINE happySpecReduce_3 #-} {-# NOINLINE happyReduce #-} {-# NOINLINE happyMonadReduce #-} {-# NOINLINE happyGoto #-} {-# NOINLINE happyFail #-} -- end of Happy Template.