module Wumpus.Drawing.Shapes.Parallelogram
(
Parallelogram
, DParallelogram
, parallelogram
, zparallelogram
) where
import Wumpus.Drawing.Basis.Geometry
import Wumpus.Drawing.Basis.ShapeTrails
import Wumpus.Drawing.Paths
import Wumpus.Drawing.Paths.Intersection
import Wumpus.Drawing.Shapes.Base
import Wumpus.Basic.Kernel
import Wumpus.Core
import Data.VectorSpace
import Control.Applicative
data Parallelogram u = Parallelogram
{ pll_ctm :: ShapeCTM u
, pll_base_width :: !u
, pll_height :: !u
, pll_base_left_ang :: Radian
}
type instance DUnit (Parallelogram u) = u
type DParallelogram = Parallelogram Double
instance Functor Parallelogram where
fmap f (Parallelogram ctm bw h lang) =
Parallelogram (fmap f ctm) (f bw) (f h) lang
mapCTM :: (ShapeCTM u -> ShapeCTM u) -> Parallelogram u -> Parallelogram u
mapCTM f = (\s i -> s { pll_ctm = f i }) <*> pll_ctm
instance (Real u, Floating u) => Rotate (Parallelogram u) where
rotate ang = mapCTM (rotate ang)
instance (Real u, Floating u) => RotateAbout (Parallelogram u) where
rotateAbout ang pt = mapCTM (rotateAbout ang pt)
instance Fractional u => Scale (Parallelogram u) where
scale sx sy = mapCTM (scale sx sy)
instance InterpretUnit u => Translate (Parallelogram u) where
translate dx dy = mapCTM (translate dx dy)
runDisplaceCenter :: (Real u, Floating u)
=> (u -> u -> Radian -> Vec2 u) -> Parallelogram u -> Anchor u
runDisplaceCenter fn (Parallelogram { pll_ctm = ctm
, pll_base_width = bw
, pll_height = h
, pll_base_left_ang = lang }) =
projectFromCtr (fn bw h lang) ctm
runDisplaceCenterHalves :: (Real u, Floating u)
=> (u -> u -> Radian -> Vec2 u)
-> Parallelogram u
-> Anchor u
runDisplaceCenterHalves fn =
runDisplaceCenter $ \bw h bl_ang -> fn (0.5*bw) (0.5*h) bl_ang
instance (Real u, Floating u) =>
CenterAnchor (Parallelogram u) where
center = runDisplaceCenter $ \_ _ _ -> V2 0 0
instance (Real u, Floating u) =>
TopCornerAnchor (Parallelogram u) where
topLeftCorner = runDisplaceCenterHalves $ \hw hh lang ->
let hypo = hh / (fromRadian $ sin lang) in hvec (hw) ^+^ avec lang hypo
topRightCorner = runDisplaceCenterHalves $ \hw hh lang ->
let hypo = hh / (fromRadian $ sin lang) in hvec hw ^+^ avec lang hypo
instance (Real u, Floating u) =>
BottomCornerAnchor (Parallelogram u) where
bottomLeftCorner = runDisplaceCenterHalves $ \hw hh lang ->
let hypo = hh / (fromRadian $ sin lang) in hvec (hw) ^+^ avec lang (hypo)
bottomRightCorner = runDisplaceCenterHalves $ \hw hh lang ->
let hypo = hh / (fromRadian $ sin lang) in hvec hw ^+^ avec lang (hypo)
instance (Real u, Floating u) =>
SideMidpointAnchor (Parallelogram u) where
sideMidpoint n a = step (n `mod` 4)
where
step 1 = midpoint (topRightCorner a) (topLeftCorner a)
step 2 = midpoint (topLeftCorner a) (bottomLeftCorner a)
step 3 = midpoint (bottomLeftCorner a) (bottomRightCorner a)
step _ = midpoint (bottomRightCorner a) (topRightCorner a)
instance (Real u, Floating u, InterpretUnit u, Tolerance u) =>
CardinalAnchor (Parallelogram u) where
north = radialAnchor (0.5 * pi)
south = radialAnchor (1.5 * pi)
east = radialAnchor 0
west = radialAnchor pi
instance (Real u, Floating u, InterpretUnit u, Tolerance u) =>
CardinalAnchor2 (Parallelogram u) where
northeast = radialAnchor (0.25*pi)
southeast = radialAnchor (1.75*pi)
southwest = radialAnchor (1.25*pi)
northwest = radialAnchor (0.75*pi)
instance (Real u, Floating u, InterpretUnit u, Tolerance u) =>
RadialAnchor (Parallelogram u) where
radialAnchor ang = runDisplaceCenter $ \bw h bl_ang->
maybe zeroVec id $ pllRadialAnchor bw h bl_ang ang
pllRadialAnchor :: (Real u, Floating u, InterpretUnit u, Tolerance u)
=> u -> u -> Radian -> Radian -> Maybe (Vec2 u)
pllRadialAnchor bw h bl_ang ang =
fmap (pvec zeroPt) $ rayPathIntersection (inclinedRay zeroPt ang) rp
where
rp = anaTrailPath zeroPt $ parallelogram_trail bw h bl_ang
parallelogram :: (Real u, Floating u, InterpretUnit u, Tolerance u)
=> u -> u -> Radian -> Shape Parallelogram u
parallelogram bw h lang =
makeShape (mkParallelogram bw h lang) (mkParallelogramPath bw h lang)
zparallelogram :: (Real u, Floating u, InterpretUnit u, Tolerance u)
=> u -> u -> Shape Parallelogram u
zparallelogram bw h = parallelogram bw h ang
where
ang = d2r (60::Double)
mkParallelogram :: (Real u, Fractional u, InterpretUnit u, Tolerance u)
=> u -> u -> Radian -> LocThetaQuery u (Parallelogram u)
mkParallelogram bw h bl_ang = qpromoteLocTheta $ \ctr theta ->
pure $ Parallelogram { pll_ctm = makeShapeCTM ctr theta
, pll_base_width = bw
, pll_height = h
, pll_base_left_ang = bl_ang
}
mkParallelogramPath :: (Real u, Floating u, InterpretUnit u, Tolerance u)
=> u -> u -> Radian -> LocThetaQuery u (AbsPath u)
mkParallelogramPath bw h bl_ang = qpromoteLocTheta $ \ctr theta ->
return $ anaTrailPath ctr $ rparallelogram_trail bw h bl_ang theta