{-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- | -- Copyright : (c) 2006-2008 Duncan Coutts -- License : BSD-style -- -- Maintainer : duncan@haskell.org -- Stability : provisional -- Portability : portable (H98 + FFI) -- -- Pure stream based interface to lower level zlib wrapper -- ----------------------------------------------------------------------------- module Codec.Compression.Zlib.Internal ( -- * Compression compress, CompressParams(..), defaultCompressParams, -- * Decompression decompress, DecompressParams(..), defaultDecompressParams, -- * The compression parameter types Stream.Format(..), Stream.CompressionLevel(..), Stream.Method(..), Stream.WindowBits(..), Stream.MemoryLevel(..), Stream.CompressionStrategy(..), ) where import Prelude hiding (length) import Control.Monad (when) import Control.Exception (assert) import qualified Data.ByteString.Lazy as L #ifdef BYTESTRING_IN_BASE import qualified Data.ByteString.Base as S #else import qualified Data.ByteString.Lazy.Internal as L import qualified Data.ByteString.Internal as S #endif import qualified Codec.Compression.Zlib.Stream as Stream import Codec.Compression.Zlib.Stream (Stream) -- | The full set of parameters for compression. The defaults are -- 'defaultCompressParams'. -- -- The 'compressBufferSize' is the size of the first output buffer containing -- the compressed data. If you know an approximate upper bound on the size of -- the compressed data then setting this parameter can save memory. The default -- compression output buffer size is @16k@. If your extimate is wrong it does -- not matter too much, the default buffer size will be used for the remaining -- chunks. -- data CompressParams = CompressParams { compressLevel :: Stream.CompressionLevel, compressMethod :: Stream.Method, compressWindowBits :: Stream.WindowBits, compressMemoryLevel :: Stream.MemoryLevel, compressStrategy :: Stream.CompressionStrategy, compressBufferSize :: Int } -- | The full set of parameters for decompression. The defaults are -- 'defaultDecompressParams'. -- -- The 'decompressBufferSize' is the size of the first output buffer, -- containing the uncompressed data. If you know an exact or approximate upper -- bound on the size of the decompressed data then setting this parameter can -- save memory. The default decompression output buffer size is @32k@. If your -- extimate is wrong it does not matter too much, the default buffer size will -- be used for the remaining chunks. -- -- One particular use case for setting the 'decompressBufferSize' is if you -- know the exact size of the decompressed data and want to produce a strict -- 'Data.ByteString.ByteString'. The compression and deccompression functions -- use lazy 'Data.ByteString.Lazy.ByteString's but if you set the -- 'decompressBufferSize' correctly then you can generate a lazy -- 'Data.ByteString.Lazy.ByteString' with exactly one chunk, which can be -- converted to a strict 'Data.ByteString.ByteString' in @O(1)@ time using -- @'Data.ByteString.concat' . 'Data.ByteString.Lazy.toChunks'@. -- data DecompressParams = DecompressParams { decompressWindowBits :: Stream.WindowBits, decompressBufferSize :: Int } -- | The default set of parameters for compression. This is typically used with -- the @compressWith@ function with specific paramaters overridden. -- defaultCompressParams :: CompressParams defaultCompressParams = CompressParams { compressLevel = Stream.DefaultCompression, compressMethod = Stream.Deflated, compressWindowBits = Stream.DefaultWindowBits, compressMemoryLevel = Stream.DefaultMemoryLevel, compressStrategy = Stream.DefaultStrategy, compressBufferSize = defaultCompressBufferSize } -- | The default set of parameters for decompression. This is typically used with -- the @compressWith@ function with specific paramaters overridden. -- defaultDecompressParams :: DecompressParams defaultDecompressParams = DecompressParams { decompressWindowBits = Stream.DefaultWindowBits, decompressBufferSize = defaultDecompressBufferSize } -- | The default chunk sizes for the output of compression and decompression -- are 16k and 32k respectively (less a small accounting overhead). -- defaultCompressBufferSize, defaultDecompressBufferSize :: Int #ifdef BYTESTRING_IN_BASE defaultCompressBufferSize = 16 * 1024 - 16 defaultDecompressBufferSize = 32 * 1024 - 16 #else defaultCompressBufferSize = 16 * 1024 - L.chunkOverhead defaultDecompressBufferSize = 32 * 1024 - L.chunkOverhead #endif {-# NOINLINE compress #-} compress :: Stream.Format -> CompressParams -> L.ByteString -> L.ByteString compress format (CompressParams compLevel method bits memLevel strategy initChunkSize) input = L.fromChunks $ Stream.run $ do Stream.deflateInit format compLevel method bits memLevel strategy case L.toChunks input of [] -> fillBuffers 20 [] --gzip header is 20 bytes, others even smaller S.PS inFPtr offset length : chunks -> do Stream.pushInputBuffer inFPtr offset length fillBuffers initChunkSize chunks where -- we flick between two states: -- * where one or other buffer is empty -- - in which case we refill one or both -- * where both buffers are non-empty -- - in which case we compress until a buffer is empty fillBuffers :: Int -> [S.ByteString] -> Stream [S.ByteString] fillBuffers outChunkSize inChunks = do Stream.consistencyCheck -- in this state there are two possabilities: -- * no outbut buffer space is available -- - in which case we must make more available -- * no input buffer is available -- - in which case we must supply more inputBufferEmpty <- Stream.inputBufferEmpty outputBufferFull <- Stream.outputBufferFull assert (inputBufferEmpty || outputBufferFull) $ return () when outputBufferFull $ do outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize) Stream.pushOutputBuffer outFPtr 0 outChunkSize if inputBufferEmpty then case inChunks of [] -> drainBuffers [] S.PS inFPtr offset length : inChunks' -> do Stream.pushInputBuffer inFPtr offset length drainBuffers inChunks' else drainBuffers inChunks drainBuffers :: [S.ByteString] -> Stream [S.ByteString] drainBuffers inChunks = do inputBufferEmpty' <- Stream.inputBufferEmpty outputBufferFull' <- Stream.outputBufferFull assert(not outputBufferFull' && (null inChunks || not inputBufferEmpty')) $ return () -- this invariant guarantees we can always make forward progress -- and that therefore a BufferError is impossible let flush = if null inChunks then Stream.Finish else Stream.NoFlush status <- Stream.deflate flush case status of Stream.Ok -> do outputBufferFull <- Stream.outputBufferFull if outputBufferFull then do (outFPtr, offset, length) <- Stream.popOutputBuffer outChunks <- Stream.unsafeInterleave (fillBuffers defaultCompressBufferSize inChunks) return (S.PS outFPtr offset length : outChunks) else do fillBuffers defaultCompressBufferSize inChunks Stream.StreamEnd -> do inputBufferEmpty <- Stream.inputBufferEmpty assert inputBufferEmpty $ return () outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable if outputBufferBytesAvailable > 0 then do (outFPtr, offset, length) <- Stream.popOutputBuffer Stream.finalise return [S.PS outFPtr offset length] else do Stream.finalise return [] Stream.BufferError -> fail "BufferError should be impossible!" Stream.NeedDict -> fail "NeedDict is impossible!" {-# NOINLINE decompress #-} decompress :: Stream.Format -> DecompressParams -> L.ByteString -> L.ByteString decompress format (DecompressParams bits initChunkSize) input = L.fromChunks $ Stream.run $ do Stream.inflateInit format bits case L.toChunks input of [] -> fillBuffers 4 [] --always an error anyway S.PS inFPtr offset length : chunks -> do Stream.pushInputBuffer inFPtr offset length fillBuffers initChunkSize chunks where -- we flick between two states: -- * where one or other buffer is empty -- - in which case we refill one or both -- * where both buffers are non-empty -- - in which case we compress until a buffer is empty fillBuffers :: Int -> [S.ByteString] -> Stream [S.ByteString] fillBuffers outChunkSize inChunks = do -- in this state there are two possabilities: -- * no outbut buffer space is available -- - in which case we must make more available -- * no input buffer is available -- - in which case we must supply more inputBufferEmpty <- Stream.inputBufferEmpty outputBufferFull <- Stream.outputBufferFull assert (inputBufferEmpty || outputBufferFull) $ return () when outputBufferFull $ do outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize) Stream.pushOutputBuffer outFPtr 0 outChunkSize if inputBufferEmpty then case inChunks of [] -> drainBuffers [] S.PS inFPtr offset length : inChunks' -> do Stream.pushInputBuffer inFPtr offset length drainBuffers inChunks' else drainBuffers inChunks drainBuffers :: [S.ByteString] -> Stream [S.ByteString] drainBuffers inChunks = do inputBufferEmpty' <- Stream.inputBufferEmpty outputBufferFull' <- Stream.outputBufferFull assert(not outputBufferFull' && (null inChunks || not inputBufferEmpty')) $ return () -- this invariant guarantees we can always make forward progress or at -- least if a BufferError does occur that it must be due to a premature EOF status <- Stream.inflate Stream.NoFlush case status of Stream.Ok -> do outputBufferFull <- Stream.outputBufferFull if outputBufferFull then do (outFPtr, offset, length) <- Stream.popOutputBuffer outChunks <- Stream.unsafeInterleave (fillBuffers defaultDecompressBufferSize inChunks) return (S.PS outFPtr offset length : outChunks) else do fillBuffers defaultDecompressBufferSize inChunks Stream.StreamEnd -> do -- Note that there may be input bytes still available if the stream -- is embeded in some other data stream. Here we just silently discard -- any trailing data. outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable if outputBufferBytesAvailable > 0 then do (outFPtr, offset, length) <- Stream.popOutputBuffer Stream.finalise return [S.PS outFPtr offset length] else do Stream.finalise return [] Stream.BufferError -> fail "premature end of compressed stream" Stream.NeedDict -> fail "compressed stream needs a custom dictionary"