{-# LANGUAGE CPP, RankNTypes, DeriveDataTypeable, BangPatterns #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ----------------------------------------------------------------------------- -- | -- Copyright : (c) 2006-2015 Duncan Coutts -- License : BSD-style -- -- Maintainer : duncan@community.haskell.org -- -- Pure and IO stream based interfaces to lower level zlib wrapper -- ----------------------------------------------------------------------------- module Codec.Compression.Zlib.Internal ( -- * Pure interface compress, decompress, -- * Monadic incremental interface -- $incremental-compression -- ** Using incremental compression -- $using-incremental-compression CompressStream(..), compressST, compressIO, foldCompressStream, foldCompressStreamWithInput, -- ** Using incremental decompression -- $using-incremental-decompression DecompressStream(..), DecompressError(..), decompressST, decompressIO, foldDecompressStream, foldDecompressStreamWithInput, -- * The compression parameter types CompressParams(..), defaultCompressParams, DecompressParams(..), defaultDecompressParams, Stream.Format(..), Stream.gzipFormat, Stream.zlibFormat, Stream.rawFormat, Stream.gzipOrZlibFormat, Stream.CompressionLevel(..), Stream.defaultCompression, Stream.noCompression, Stream.bestSpeed, Stream.bestCompression, Stream.compressionLevel, Stream.Method(..), Stream.deflateMethod, Stream.WindowBits(..), Stream.defaultWindowBits, Stream.windowBits, Stream.MemoryLevel(..), Stream.defaultMemoryLevel, Stream.minMemoryLevel, Stream.maxMemoryLevel, Stream.memoryLevel, Stream.CompressionStrategy(..), Stream.defaultStrategy, Stream.filteredStrategy, Stream.huffmanOnlyStrategy, ) where import Prelude hiding (length) import Control.Monad (when) import Control.Exception (Exception, throw, assert) import Control.Monad.ST.Lazy hiding (stToIO) import Control.Monad.ST.Strict (stToIO) #if __GLASGOW_HASKELL__ >= 702 import qualified Control.Monad.ST.Unsafe as Unsafe (unsafeIOToST) #else import qualified Control.Monad.ST.Strict as Unsafe (unsafeIOToST) #endif import Data.Typeable (Typeable) import qualified Data.ByteString.Lazy as L import qualified Data.ByteString.Lazy.Internal as L import qualified Data.ByteString as S import qualified Data.ByteString.Internal as S import Data.Word (Word8) import GHC.IO (noDuplicate) import qualified Codec.Compression.Zlib.Stream as Stream import Codec.Compression.Zlib.ByteStringCompat (mkBS, withBS) import Codec.Compression.Zlib.Stream (Stream) -- | The full set of parameters for compression. The defaults are -- 'defaultCompressParams'. -- -- The 'compressBufferSize' is the size of the first output buffer containing -- the compressed data. If you know an approximate upper bound on the size of -- the compressed data then setting this parameter can save memory. The default -- compression output buffer size is @16k@. If your extimate is wrong it does -- not matter too much, the default buffer size will be used for the remaining -- chunks. -- data CompressParams = CompressParams { compressLevel :: !Stream.CompressionLevel, compressMethod :: !Stream.Method, compressWindowBits :: !Stream.WindowBits, compressMemoryLevel :: !Stream.MemoryLevel, compressStrategy :: !Stream.CompressionStrategy, compressBufferSize :: !Int, compressDictionary :: Maybe S.ByteString } deriving Show -- | The full set of parameters for decompression. The defaults are -- 'defaultDecompressParams'. -- -- The 'decompressBufferSize' is the size of the first output buffer, -- containing the uncompressed data. If you know an exact or approximate upper -- bound on the size of the decompressed data then setting this parameter can -- save memory. The default decompression output buffer size is @32k@. If your -- extimate is wrong it does not matter too much, the default buffer size will -- be used for the remaining chunks. -- -- One particular use case for setting the 'decompressBufferSize' is if you -- know the exact size of the decompressed data and want to produce a strict -- 'Data.ByteString.ByteString'. The compression and deccompression functions -- use lazy 'Data.ByteString.Lazy.ByteString's but if you set the -- 'decompressBufferSize' correctly then you can generate a lazy -- 'Data.ByteString.Lazy.ByteString' with exactly one chunk, which can be -- converted to a strict 'Data.ByteString.ByteString' in @O(1)@ time using -- @'Data.ByteString.concat' . 'Data.ByteString.Lazy.toChunks'@. -- data DecompressParams = DecompressParams { decompressWindowBits :: !Stream.WindowBits, decompressBufferSize :: !Int, decompressDictionary :: Maybe S.ByteString, decompressAllMembers :: Bool } deriving Show -- | The default set of parameters for compression. This is typically used with -- the @compressWith@ function with specific parameters overridden. -- defaultCompressParams :: CompressParams defaultCompressParams = CompressParams { compressLevel = Stream.defaultCompression, compressMethod = Stream.deflateMethod, compressWindowBits = Stream.defaultWindowBits, compressMemoryLevel = Stream.defaultMemoryLevel, compressStrategy = Stream.defaultStrategy, compressBufferSize = defaultCompressBufferSize, compressDictionary = Nothing } -- | The default set of parameters for decompression. This is typically used with -- the @compressWith@ function with specific parameters overridden. -- defaultDecompressParams :: DecompressParams defaultDecompressParams = DecompressParams { decompressWindowBits = Stream.defaultWindowBits, decompressBufferSize = defaultDecompressBufferSize, decompressDictionary = Nothing, decompressAllMembers = True } -- | The default chunk sizes for the output of compression and decompression -- are 16k and 32k respectively (less a small accounting overhead). -- defaultCompressBufferSize, defaultDecompressBufferSize :: Int defaultCompressBufferSize = 16 * 1024 - L.chunkOverhead defaultDecompressBufferSize = 32 * 1024 - L.chunkOverhead -- | The unfolding of the decompression process, where you provide a sequence -- of compressed data chunks as input and receive a sequence of uncompressed -- data chunks as output. The process is incremental, in that the demand for -- input and provision of output are interleaved. -- -- To indicate the end of the input supply an empty input chunk. Note that -- for 'gzipFormat' with the default 'decompressAllMembers' @True@ you will -- have to do this, as the decompressor will look for any following members. -- With 'decompressAllMembers' @False@ the decompressor knows when the data -- ends and will produce 'DecompressStreamEnd' without you having to supply an -- empty chunk to indicate the end of the input. -- data DecompressStream m = DecompressInputRequired { decompressSupplyInput :: S.ByteString -> m (DecompressStream m) } | DecompressOutputAvailable { decompressOutput :: !S.ByteString, decompressNext :: m (DecompressStream m) } -- | Includes any trailing unconsumed /input/ data. | DecompressStreamEnd { decompressUnconsumedInput :: S.ByteString } -- | An error code | DecompressStreamError { decompressStreamError :: DecompressError } -- | The possible error cases when decompressing a stream. -- -- This can be 'show'n to give a human readable error message. -- data DecompressError = -- | The compressed data stream ended prematurely. This may happen if the -- input data stream was truncated. TruncatedInput -- | It is possible to do zlib compression with a custom dictionary. This -- allows slightly higher compression ratios for short files. However such -- compressed streams require the same dictionary when decompressing. This -- error is for when we encounter a compressed stream that needs a -- dictionary, and it's not provided. | DictionaryRequired -- | If the stream requires a dictionary and you provide one with the -- wrong 'DictionaryHash' then you will get this error. | DictionaryMismatch -- | If the compressed data stream is corrupted in any way then you will -- get this error, for example if the input data just isn't a compressed -- zlib data stream. In particular if the data checksum turns out to be -- wrong then you will get all the decompressed data but this error at the -- end, instead of the normal sucessful 'StreamEnd'. | DataFormatError String deriving (Eq, Typeable) instance Show DecompressError where show TruncatedInput = modprefix "premature end of compressed data stream" show DictionaryRequired = modprefix "compressed data stream requires custom dictionary" show DictionaryMismatch = modprefix "given dictionary does not match the expected one" show (DataFormatError detail) = modprefix ("compressed data stream format error (" ++ detail ++ ")") modprefix :: ShowS modprefix = ("Codec.Compression.Zlib: " ++) instance Exception DecompressError -- | A fold over the 'DecompressStream' in the given monad. -- -- One way to look at this is that it runs the stream, using callback functions -- for the four stream events. -- foldDecompressStream :: Monad m => ((S.ByteString -> m a) -> m a) -> (S.ByteString -> m a -> m a) -> (S.ByteString -> m a) -> (DecompressError -> m a) -> DecompressStream m -> m a foldDecompressStream input output end err = fold where fold (DecompressInputRequired next) = input (\x -> next x >>= fold) fold (DecompressOutputAvailable outchunk next) = output outchunk (next >>= fold) fold (DecompressStreamEnd inchunk) = end inchunk fold (DecompressStreamError derr) = err derr -- | A variant on 'foldCompressStream' that is pure rather than operating in a -- monad and where the input is provided by a lazy 'L.ByteString'. So we only -- have to deal with the output, end and error parts, making it like a foldr on -- a list of output chunks. -- -- For example: -- -- > toChunks = foldDecompressStreamWithInput (:) [] throw -- foldDecompressStreamWithInput :: (S.ByteString -> a -> a) -> (L.ByteString -> a) -> (DecompressError -> a) -> (forall s. DecompressStream (ST s)) -> L.ByteString -> a foldDecompressStreamWithInput chunk end err = \s lbs -> runST (fold s (L.toChunks lbs)) where fold (DecompressInputRequired next) [] = next S.empty >>= \strm -> fold strm [] fold (DecompressInputRequired next) (inchunk:inchunks) = next inchunk >>= \s -> fold s inchunks fold (DecompressOutputAvailable outchunk next) inchunks = do r <- next >>= \s -> fold s inchunks return $ chunk outchunk r fold (DecompressStreamEnd inchunk) inchunks = return $ end (L.fromChunks (inchunk:inchunks)) fold (DecompressStreamError derr) _ = return $ err derr -- $incremental-compression -- The pure 'compress' and 'decompress' functions are streaming in the sense -- that they can produce output without demanding all input, however they need -- the input data stream as a lazy 'L.ByteString'. Having the input data -- stream as a lazy 'L.ByteString' often requires using lazy I\/O which is not -- appropriate in all cicumstances. -- -- For these cases an incremental interface is more appropriate. This interface -- allows both incremental input and output. Chunks of input data are supplied -- one by one (e.g. as they are obtained from an input source like a file or -- network source). Output is also produced chunk by chunk. -- -- The incremental input and output is managed via the 'CompressStream' and -- 'DecompressStream' types. They represents the unfolding of the process of -- compressing and decompressing. They operates in either the 'ST' or 'IO' -- monads. They can be lifted into other incremental abstractions like pipes or -- conduits, or they can be used directly in the following style. -- $using-incremental-compression -- -- In a loop: -- -- * Inspect the status of the stream -- -- * When it is 'CompressInputRequired' then you should call the action, -- passing a chunk of input (or 'BS.empty' when no more input is available) -- to get the next state of the stream and continue the loop. -- -- * When it is 'CompressOutputAvailable' then do something with the given -- chunk of output, and call the action to get the next state of the stream -- and continue the loop. -- -- * When it is 'CompressStreamEnd' then terminate the loop. -- -- Note that you cannot stop as soon as you have no more input, you need to -- carry on until all the output has been collected, i.e. until you get to -- 'CompressStreamEnd'. -- -- Here is an example where we get input from one file handle and send the -- compressed output to another file handle. -- -- > go :: Handle -> Handle -> CompressStream IO -> IO () -- > go inh outh (CompressInputRequired next) = do -- > inchunk <- BS.hGet inh 4096 -- > go inh outh =<< next inchunk -- > go inh outh (CompressOutputAvailable outchunk next) = -- > BS.hPut outh outchunk -- > go inh outh =<< next -- > go _ _ CompressStreamEnd = return () -- -- The same can be achieved with 'foldCompressStream': -- -- > foldCompressStream -- > (\next -> do inchunk <- BS.hGet inh 4096; next inchunk) -- > (\outchunk next -> do BS.hPut outh outchunk; next) -- > (return ()) -- $using-incremental-decompression -- -- The use of 'DecompressStream' is very similar to 'CompressStream' but with -- a few differences: -- -- * There is the extra possibility of a 'DecompressStreamError' -- -- * There can be extra trailing data after a compressed stream, and the -- 'DecompressStreamEnd' includes that. -- -- Otherwise the same loop style applies, and there are fold functions. -- | The unfolding of the compression process, where you provide a sequence -- of uncompressed data chunks as input and receive a sequence of compressed -- data chunks as output. The process is incremental, in that the demand for -- input and provision of output are interleaved. -- data CompressStream m = CompressInputRequired { compressSupplyInput :: S.ByteString -> m (CompressStream m) } | CompressOutputAvailable { compressOutput :: !S.ByteString, compressNext :: m (CompressStream m) } | CompressStreamEnd -- | A fold over the 'CompressStream' in the given monad. -- -- One way to look at this is that it runs the stream, using callback functions -- for the three stream events. -- foldCompressStream :: Monad m => ((S.ByteString -> m a) -> m a) -> (S.ByteString -> m a -> m a) -> m a -> CompressStream m -> m a foldCompressStream input output end = fold where fold (CompressInputRequired next) = input (\x -> next x >>= fold) fold (CompressOutputAvailable outchunk next) = output outchunk (next >>= fold) fold CompressStreamEnd = end -- | A variant on 'foldCompressStream' that is pure rather than operating in a -- monad and where the input is provided by a lazy 'L.ByteString'. So we only -- have to deal with the output and end parts, making it just like a foldr on a -- list of output chunks. -- -- For example: -- -- > toChunks = foldCompressStreamWithInput (:) [] -- foldCompressStreamWithInput :: (S.ByteString -> a -> a) -> a -> (forall s. CompressStream (ST s)) -> L.ByteString -> a foldCompressStreamWithInput chunk end = \s lbs -> runST (fold s (L.toChunks lbs)) where fold (CompressInputRequired next) [] = next S.empty >>= \strm -> fold strm [] fold (CompressInputRequired next) (inchunk:inchunks) = next inchunk >>= \s -> fold s inchunks fold (CompressOutputAvailable outchunk next) inchunks = do r <- next >>= \s -> fold s inchunks return $ chunk outchunk r fold CompressStreamEnd _inchunks = return end -- | Compress a data stream provided as a lazy 'L.ByteString'. -- -- There are no expected error conditions. All input data streams are valid. It -- is possible for unexpected errors to occur, such as running out of memory, -- or finding the wrong version of the zlib C library, these are thrown as -- exceptions. -- compress :: Stream.Format -> CompressParams -> L.ByteString -> L.ByteString -- | Incremental compression in the 'ST' monad. Using 'ST' makes it possible -- to write pure /lazy/ functions while making use of incremental compression. -- compressST :: Stream.Format -> CompressParams -> CompressStream (ST s) -- | Incremental compression in the 'IO' monad. -- compressIO :: Stream.Format -> CompressParams -> CompressStream IO compress format params = foldCompressStreamWithInput L.Chunk L.Empty (compressStreamST format params) compressST format params = compressStreamST format params compressIO format params = compressStreamIO format params compressStream :: Stream.Format -> CompressParams -> S.ByteString -> Stream (CompressStream Stream) compressStream format (CompressParams compLevel method bits memLevel strategy initChunkSize mdict) = \chunk -> do Stream.deflateInit format compLevel method bits memLevel strategy setDictionary mdict withBS chunk $ \inFPtr length -> if length == 0 then fillBuffers 20 --gzip header is 20 bytes, others even smaller else do Stream.pushInputBuffer inFPtr 0 length fillBuffers initChunkSize where -- we flick between two states: -- * where one or other buffer is empty -- - in which case we refill one or both -- * where both buffers are non-empty -- - in which case we compress until a buffer is empty fillBuffers :: Int -> Stream (CompressStream Stream) fillBuffers outChunkSize = do #ifdef DEBUG Stream.consistencyCheck #endif -- in this state there are two possabilities: -- * no outbut buffer space is available -- - in which case we must make more available -- * no input buffer is available -- - in which case we must supply more inputBufferEmpty <- Stream.inputBufferEmpty outputBufferFull <- Stream.outputBufferFull assert (inputBufferEmpty || outputBufferFull) $ return () when outputBufferFull $ do outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize) Stream.pushOutputBuffer outFPtr 0 outChunkSize if inputBufferEmpty then return $ CompressInputRequired $ flip withBS $ \inFPtr length -> if length == 0 then drainBuffers True else do Stream.pushInputBuffer inFPtr 0 length drainBuffers False else drainBuffers False drainBuffers :: Bool -> Stream (CompressStream Stream) drainBuffers lastChunk = do inputBufferEmpty' <- Stream.inputBufferEmpty outputBufferFull' <- Stream.outputBufferFull assert(not outputBufferFull' && (lastChunk || not inputBufferEmpty')) $ return () -- this invariant guarantees we can always make forward progress -- and that therefore a BufferError is impossible let flush = if lastChunk then Stream.Finish else Stream.NoFlush status <- Stream.deflate flush case status of Stream.Ok -> do outputBufferFull <- Stream.outputBufferFull if outputBufferFull then do (outFPtr, offset, length) <- Stream.popOutputBuffer let chunk = mkBS outFPtr offset length return $ CompressOutputAvailable chunk $ do fillBuffers defaultCompressBufferSize else do fillBuffers defaultCompressBufferSize Stream.StreamEnd -> do inputBufferEmpty <- Stream.inputBufferEmpty assert inputBufferEmpty $ return () outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable if outputBufferBytesAvailable > 0 then do (outFPtr, offset, length) <- Stream.popOutputBuffer let chunk = mkBS outFPtr offset length Stream.finalise return $ CompressOutputAvailable chunk (return CompressStreamEnd) else do Stream.finalise return CompressStreamEnd Stream.Error code msg -> case code of Stream.BufferError -> fail "BufferError should be impossible!" Stream.NeedDict _ -> fail "NeedDict is impossible!" _ -> fail msg -- Set the custom dictionary, if we were provided with one -- and if the format supports it (zlib and raw, not gzip). setDictionary :: Maybe S.ByteString -> Stream () setDictionary (Just dict) | Stream.formatSupportsDictionary format = do status <- Stream.deflateSetDictionary dict case status of Stream.Ok -> return () Stream.Error _ msg -> fail msg _ -> fail "error when setting deflate dictionary" setDictionary _ = return () -- | Decompress a data stream provided as a lazy 'L.ByteString'. -- -- It will throw an exception if any error is encountered in the input data. -- If you need more control over error handling then use one the incremental -- versions, 'decompressST' or 'decompressIO'. -- decompress :: Stream.Format -> DecompressParams -> L.ByteString -> L.ByteString -- | Incremental decompression in the 'ST' monad. Using 'ST' makes it possible -- to write pure /lazy/ functions while making use of incremental decompression. -- decompressST :: Stream.Format -> DecompressParams -> DecompressStream (ST s) -- | Incremental decompression in the 'IO' monad. -- decompressIO :: Stream.Format -> DecompressParams -> DecompressStream IO decompress format params = foldDecompressStreamWithInput L.Chunk (const L.Empty) throw (decompressStreamST format params) decompressST format params = decompressStreamST format params decompressIO format params = decompressStreamIO format params decompressStream :: Stream.Format -> DecompressParams -> Bool -> S.ByteString -> Stream (DecompressStream Stream) decompressStream format (DecompressParams bits initChunkSize mdict allMembers) resume = \chunk -> do inputBufferEmpty <- Stream.inputBufferEmpty outputBufferFull <- Stream.outputBufferFull assert inputBufferEmpty $ if resume then assert (format == Stream.gzipFormat && allMembers) $ Stream.inflateReset else assert outputBufferFull $ Stream.inflateInit format bits withBS chunk $ \inFPtr length -> if length == 0 then do -- special case to avoid demanding more input again -- always an error anyway when outputBufferFull $ do let outChunkSize = 1 outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize) Stream.pushOutputBuffer outFPtr 0 outChunkSize drainBuffers True else do Stream.pushInputBuffer inFPtr 0 length -- Normally we start with no output buffer (so counts as full) but -- if we're resuming then we'll usually still have output buffer -- space available assert (if not resume then outputBufferFull else True) $ return () if outputBufferFull then fillBuffers initChunkSize else drainBuffers False where -- we flick between two states: -- * where one or other buffer is empty -- - in which case we refill one or both -- * where both buffers are non-empty -- - in which case we compress until a buffer is empty fillBuffers :: Int -> Stream (DecompressStream Stream) fillBuffers outChunkSize = do #ifdef DEBUG Stream.consistencyCheck #endif -- in this state there are two possabilities: -- * no outbut buffer space is available -- - in which case we must make more available -- * no input buffer is available -- - in which case we must supply more inputBufferEmpty <- Stream.inputBufferEmpty outputBufferFull <- Stream.outputBufferFull assert (inputBufferEmpty || outputBufferFull) $ return () when outputBufferFull $ do outFPtr <- Stream.unsafeLiftIO (S.mallocByteString outChunkSize) Stream.pushOutputBuffer outFPtr 0 outChunkSize if inputBufferEmpty then return $ DecompressInputRequired $ \chunk -> withBS chunk $ \inFPtr length -> if length == 0 then drainBuffers True else do Stream.pushInputBuffer inFPtr 0 length drainBuffers False else drainBuffers False drainBuffers :: Bool -> Stream (DecompressStream Stream) drainBuffers lastChunk = do inputBufferEmpty' <- Stream.inputBufferEmpty outputBufferFull' <- Stream.outputBufferFull assert(not outputBufferFull' && (lastChunk || not inputBufferEmpty')) $ return () -- this invariant guarantees we can always make forward progress or at -- least if a BufferError does occur that it must be due to a premature EOF status <- Stream.inflate Stream.NoFlush case status of Stream.Ok -> do outputBufferFull <- Stream.outputBufferFull if outputBufferFull then do (outFPtr, offset, length) <- Stream.popOutputBuffer let chunk = mkBS outFPtr offset length return $ DecompressOutputAvailable chunk $ do fillBuffers defaultDecompressBufferSize else do fillBuffers defaultDecompressBufferSize Stream.StreamEnd -> do -- The decompressor tells us we're done. -- Note that there may be input bytes still available if the stream is -- embeded in some other data stream, so we return any trailing data. inputBufferEmpty <- Stream.inputBufferEmpty if inputBufferEmpty then do finish (DecompressStreamEnd S.empty) else do (inFPtr, offset, length) <- Stream.popRemainingInputBuffer let inchunk = mkBS inFPtr offset length finish (DecompressStreamEnd inchunk) Stream.Error code msg -> case code of Stream.BufferError -> finish (DecompressStreamError TruncatedInput) Stream.NeedDict adler -> do err <- setDictionary adler mdict case err of Just streamErr -> finish streamErr Nothing -> drainBuffers lastChunk Stream.DataError -> finish (DecompressStreamError (DataFormatError msg)) _ -> fail msg -- Note even if we end with an error we still try to flush the last chunk if -- there is one. The user just has to decide what they want to trust. finish end = do outputBufferBytesAvailable <- Stream.outputBufferBytesAvailable if outputBufferBytesAvailable > 0 then do (outFPtr, offset, length) <- Stream.popOutputBuffer return (DecompressOutputAvailable (mkBS outFPtr offset length) (return end)) else return end setDictionary :: Stream.DictionaryHash -> Maybe S.ByteString -> Stream (Maybe (DecompressStream Stream)) setDictionary _adler Nothing = return $ Just (DecompressStreamError DictionaryRequired) setDictionary _adler (Just dict) = do status <- Stream.inflateSetDictionary dict case status of Stream.Ok -> return Nothing Stream.Error Stream.DataError _ -> return $ Just (DecompressStreamError DictionaryMismatch) _ -> fail "error when setting inflate dictionary" ------------------------------------------------------------------------------ mkStateST :: ST s (Stream.State s) mkStateIO :: IO (Stream.State RealWorld) mkStateST = strictToLazyST Stream.mkState mkStateIO = stToIO Stream.mkState runStreamST :: Stream a -> Stream.State s -> ST s (a, Stream.State s) runStreamIO :: Stream a -> Stream.State RealWorld -> IO (a, Stream.State RealWorld) runStreamST strm zstate = strictToLazyST (Unsafe.unsafeIOToST noDuplicate >> Stream.runStream strm zstate) runStreamIO strm zstate = stToIO (Stream.runStream strm zstate) compressStreamIO :: Stream.Format -> CompressParams -> CompressStream IO compressStreamIO format params = CompressInputRequired { compressSupplyInput = \chunk -> do zstate <- mkStateIO let next = compressStream format params (strm', zstate') <- runStreamIO (next chunk) zstate return (go strm' zstate') } where go :: CompressStream Stream -> Stream.State RealWorld -> CompressStream IO go (CompressInputRequired next) zstate = CompressInputRequired { compressSupplyInput = \chunk -> do (strm', zstate') <- runStreamIO (next chunk) zstate return (go strm' zstate') } go (CompressOutputAvailable chunk next) zstate = CompressOutputAvailable chunk $ do (strm', zstate') <- runStreamIO next zstate return (go strm' zstate') go CompressStreamEnd _ = CompressStreamEnd compressStreamST :: Stream.Format -> CompressParams -> CompressStream (ST s) compressStreamST format params = CompressInputRequired { compressSupplyInput = \chunk -> do zstate <- mkStateST let next = compressStream format params (strm', zstate') <- runStreamST (next chunk) zstate return (go strm' zstate') } where go :: CompressStream Stream -> Stream.State s -> CompressStream (ST s) go (CompressInputRequired next) zstate = CompressInputRequired { compressSupplyInput = \chunk -> do (strm', zstate') <- runStreamST (next chunk) zstate return (go strm' zstate') } go (CompressOutputAvailable chunk next) zstate = CompressOutputAvailable chunk $ do (strm', zstate') <- runStreamST next zstate return (go strm' zstate') go CompressStreamEnd _ = CompressStreamEnd decompressStreamIO :: Stream.Format -> DecompressParams -> DecompressStream IO decompressStreamIO format params = DecompressInputRequired $ \chunk -> do zstate <- mkStateIO let next = decompressStream format params False (strm', zstate') <- runStreamIO (next chunk) zstate go strm' zstate' (S.null chunk) where go :: DecompressStream Stream -> Stream.State RealWorld -> Bool -> IO (DecompressStream IO) go (DecompressInputRequired next) zstate !_ = return $ DecompressInputRequired $ \chunk -> do (strm', zstate') <- runStreamIO (next chunk) zstate go strm' zstate' (S.null chunk) go (DecompressOutputAvailable chunk next) zstate !eof = return $ DecompressOutputAvailable chunk $ do (strm', zstate') <- runStreamIO next zstate go strm' zstate' eof go (DecompressStreamEnd unconsumed) zstate !eof | format == Stream.gzipFormat , decompressAllMembers params , not eof = tryFollowingStream unconsumed zstate | otherwise = finaliseStreamEnd unconsumed zstate go (DecompressStreamError err) zstate !_ = finaliseStreamError err zstate tryFollowingStream :: S.ByteString -> Stream.State RealWorld -> IO (DecompressStream IO) tryFollowingStream chunk zstate = case S.length chunk of 0 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of 0 -> finaliseStreamEnd S.empty zstate 1 | S.head chunk' /= 0x1f -> finaliseStreamEnd chunk' zstate 1 -> return $ DecompressInputRequired $ \chunk'' -> case S.length chunk'' of 0 -> finaliseStreamEnd chunk' zstate _ -> checkHeaderSplit (S.head chunk') chunk'' zstate _ -> checkHeader chunk' zstate 1 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of 0 -> finaliseStreamEnd chunk zstate _ -> checkHeaderSplit (S.head chunk) chunk' zstate _ -> checkHeader chunk zstate checkHeaderSplit :: Word8 -> S.ByteString -> Stream.State RealWorld -> IO (DecompressStream IO) checkHeaderSplit 0x1f chunk zstate | S.head chunk == 0x8b = do let resume = decompressStream format params True (S.pack [0x1f, 0x8b]) if S.length chunk > 1 then do -- have to handle the remaining data in this chunk (DecompressInputRequired next, zstate') <- runStreamIO resume zstate (strm', zstate'') <- runStreamIO (next (S.tail chunk)) zstate' go strm' zstate'' False else do -- subtle special case when the chunk tail is empty -- yay for QC tests (strm, zstate') <- runStreamIO resume zstate go strm zstate' False checkHeaderSplit byte chunk zstate = finaliseStreamEnd (S.cons byte chunk) zstate checkHeader :: S.ByteString -> Stream.State RealWorld -> IO (DecompressStream IO) checkHeader chunk zstate | S.index chunk 0 == 0x1f , S.index chunk 1 == 0x8b = do let resume = decompressStream format params True chunk (strm', zstate') <- runStreamIO resume zstate go strm' zstate' False checkHeader chunk zstate = finaliseStreamEnd chunk zstate finaliseStreamEnd unconsumed zstate = do _ <- runStreamIO Stream.finalise zstate return (DecompressStreamEnd unconsumed) finaliseStreamError err zstate = do _ <- runStreamIO Stream.finalise zstate return (DecompressStreamError err) decompressStreamST :: Stream.Format -> DecompressParams -> DecompressStream (ST s) decompressStreamST format params = DecompressInputRequired $ \chunk -> do zstate <- mkStateST let next = decompressStream format params False (strm', zstate') <- runStreamST (next chunk) zstate go strm' zstate' (S.null chunk) where go :: DecompressStream Stream -> Stream.State s -> Bool -> ST s (DecompressStream (ST s)) go (DecompressInputRequired next) zstate !_ = return $ DecompressInputRequired $ \chunk -> do (strm', zstate') <- runStreamST (next chunk) zstate go strm' zstate' (S.null chunk) go (DecompressOutputAvailable chunk next) zstate !eof = return $ DecompressOutputAvailable chunk $ do (strm', zstate') <- runStreamST next zstate go strm' zstate' eof go (DecompressStreamEnd unconsumed) zstate !eof | format == Stream.gzipFormat , decompressAllMembers params , not eof = tryFollowingStream unconsumed zstate | otherwise = finaliseStreamEnd unconsumed zstate go (DecompressStreamError err) zstate !_ = finaliseStreamError err zstate tryFollowingStream :: S.ByteString -> Stream.State s -> ST s (DecompressStream (ST s)) tryFollowingStream chunk zstate = case S.length chunk of 0 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of 0 -> finaliseStreamEnd S.empty zstate 1 | S.head chunk' /= 0x1f -> finaliseStreamEnd chunk' zstate 1 -> return $ DecompressInputRequired $ \chunk'' -> case S.length chunk'' of 0 -> finaliseStreamEnd chunk' zstate _ -> checkHeaderSplit (S.head chunk') chunk'' zstate _ -> checkHeader chunk' zstate 1 -> return $ DecompressInputRequired $ \chunk' -> case S.length chunk' of 0 -> finaliseStreamEnd chunk zstate _ -> checkHeaderSplit (S.head chunk) chunk' zstate _ -> checkHeader chunk zstate checkHeaderSplit :: Word8 -> S.ByteString -> Stream.State s -> ST s (DecompressStream (ST s)) checkHeaderSplit 0x1f chunk zstate | S.head chunk == 0x8b = do let resume = decompressStream format params True (S.pack [0x1f, 0x8b]) if S.length chunk > 1 then do -- have to handle the remaining data in this chunk (DecompressInputRequired next, zstate') <- runStreamST resume zstate (strm', zstate'') <- runStreamST (next (S.tail chunk)) zstate' go strm' zstate'' False else do -- subtle special case when the chunk tail is empty -- yay for QC tests (strm, zstate') <- runStreamST resume zstate go strm zstate' False checkHeaderSplit byte chunk zstate = finaliseStreamEnd (S.cons byte chunk) zstate checkHeader :: S.ByteString -> Stream.State s -> ST s (DecompressStream (ST s)) checkHeader chunk zstate | S.index chunk 0 == 0x1f , S.index chunk 1 == 0x8b = do let resume = decompressStream format params True chunk (strm', zstate') <- runStreamST resume zstate go strm' zstate' False checkHeader chunk zstate = finaliseStreamEnd chunk zstate finaliseStreamEnd unconsumed zstate = do _ <- runStreamST Stream.finalise zstate return (DecompressStreamEnd unconsumed) finaliseStreamError err zstate = do _ <- runStreamST Stream.finalise zstate return (DecompressStreamError err)