Data.Number.ER.RnToRm.UnitDom.ChebyshevBase.Polynom
 Portability portable Stability experimental Maintainer mik@konecny.aow.cz
Description

Arithmetic of multivariate polynomials represented by their coefficients it the Chebyshev basis.

The polynomials are never to be used outside the domain [-1,1]^n.

All operations are rounded in such a way that the resulting polynomial is a point-wise upper or lower bound of the exact result.

Synopsis
data ERChebPoly box b = ERChebPoly {
 chplCoeffs :: Map (TermKey box) b
}
type TermKey box = box
Documentation
 data ERChebPoly box b Source

A polynomial represented by its coefficients it the Chebyshev basis.

The polynomials are never to be used outside the domain [-1,1]^n.

All operations are rounded in such a way that the resulting polynomial is a point-wise upper or lower bound of the exact result.

Constructors
ERChebPoly
 chplCoeffs :: Map (TermKey box) b
Instances
 Typeable2 ERChebPoly (ERRealBase rb, RealFrac rb, DomainBox box varid Int, Ord box, DomainBoxMappable boxb boxras varid rb ([] (ERInterval rb)), DomainBoxMappable boxra boxras varid (ERInterval rb) ([] (ERInterval rb)), DomainIntBox boxra varid (ERInterval rb)) => ERUnitFnBase boxb boxra varid rb (ERInterval rb) (ERChebPoly box rb) (Eq box, Eq b) => Eq (ERChebPoly box b) (Data box, Data b, Ord box) => Data (ERChebPoly box b) (Ord box, Ord b) => Ord (ERChebPoly box b) (ERRealBase b, DomainBox box varid Int, Ord box) => Show (ERChebPoly box b) (Ord a, Binary a, Binary b) => Binary (ERChebPoly a b)
 type TermKey box = box Source