
Data.Number.ER.RnToRm.UnitDom.ChebyshevBase.Polynom  Portability  portable  Stability  experimental  Maintainer  mik@konecny.aow.cz 



Description 
Arithmetic of multivariate polynomials
represented by their coefficients it the Chebyshev basis.
The polynomials are never to be used outside the domain [1,1]^n.
All operations are rounded in such a way that the resulting polynomial
is a pointwise upper or lower bound of the exact result.


Synopsis 



Documentation 


A polynomial represented by its coefficients it the Chebyshev basis.
The polynomials are never to be used outside the domain [1,1]^n.
All operations are rounded in such a way that the resulting polynomial
is a pointwise upper or lower bound of the exact result.
 Constructors   Instances  Typeable2 ERChebPoly  (ERRealBase rb, RealFrac rb, DomainBox box varid Int, Ord box, DomainBoxMappable boxb boxras varid rb ([] (ERInterval rb)), DomainBoxMappable boxra boxras varid (ERInterval rb) ([] (ERInterval rb)), DomainIntBox boxra varid (ERInterval rb)) => ERUnitFnBase boxb boxra varid rb (ERInterval rb) (ERChebPoly box rb)  (Eq box, Eq b) => Eq (ERChebPoly box b)  (Data box, Data b, Ord box) => Data (ERChebPoly box b)  (Ord box, Ord b) => Ord (ERChebPoly box b)  (ERRealBase b, DomainBox box varid Int, Ord box) => Show (ERChebPoly box b)  (Ord a, Binary a, Binary b) => Binary (ERChebPoly a b) 





Produced by Haddock version 2.4.2 