BNFC-2.8.2: A compiler front-end generator.

Safe HaskellNone
LanguageHaskell98

Algebra.RingUtils

Synopsis

Documentation

(++) :: [a] -> [a] -> [a] infixr 5 #

Append two lists, i.e.,

[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]

If the first list is not finite, the result is the first list.

seq :: a -> b -> b #

The value of seq a b is bottom if a is bottom, and otherwise equal to b. In other words, it evaluates the first argument a to weak head normal form (WHNF). seq is usually introduced to improve performance by avoiding unneeded laziness.

A note on evaluation order: the expression seq a b does not guarantee that a will be evaluated before b. The only guarantee given by seq is that the both a and b will be evaluated before seq returns a value. In particular, this means that b may be evaluated before a. If you need to guarantee a specific order of evaluation, you must use the function pseq from the "parallel" package.

filter :: (a -> Bool) -> [a] -> [a] #

filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e.,

filter p xs = [ x | x <- xs, p x]

zip :: [a] -> [b] -> [(a, b)] #

zip takes two lists and returns a list of corresponding pairs.

zip [1, 2] ['a', 'b'] = [(1, 'a'), (2, 'b')]

If one input list is short, excess elements of the longer list are discarded:

zip [1] ['a', 'b'] = [(1, 'a')]
zip [1, 2] ['a'] = [(1, 'a')]

zip is right-lazy:

zip [] _|_ = []
zip _|_ [] = _|_

print :: Show a => a -> IO () #

The print function outputs a value of any printable type to the standard output device. Printable types are those that are instances of class Show; print converts values to strings for output using the show operation and adds a newline.

For example, a program to print the first 20 integers and their powers of 2 could be written as:

main = print ([(n, 2^n) | n <- [0..19]])

fst :: (a, b) -> a #

Extract the first component of a pair.

snd :: (a, b) -> b #

Extract the second component of a pair.

otherwise :: Bool #

otherwise is defined as the value True. It helps to make guards more readable. eg.

 f x | x < 0     = ...
     | otherwise = ...

map :: (a -> b) -> [a] -> [b] #

map f xs is the list obtained by applying f to each element of xs, i.e.,

map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
map f [x1, x2, ...] == [f x1, f x2, ...]

($) :: (a -> b) -> a -> b infixr 0 #

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

Note that ($) is levity-polymorphic in its result type, so that foo $ True where foo :: Bool -> Int# is well-typed

fromIntegral :: (Integral a, Num b) => a -> b #

general coercion from integral types

realToFrac :: (Real a, Fractional b) => a -> b #

general coercion to fractional types

class Bounded a where #

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Methods

minBound :: a #

maxBound :: a #

Instances
Bounded Bool

Since: base-2.1

Instance details

Defined in GHC.Enum

Bounded Char

Since: base-2.1

Instance details

Defined in GHC.Enum

Bounded Int

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: Int #

maxBound :: Int #

Bounded Ordering

Since: base-2.1

Instance details

Defined in GHC.Enum

Bounded Word

Since: base-2.1

Instance details

Defined in GHC.Enum

Bounded VecCount

Since: base-4.10.0.0

Instance details

Defined in GHC.Enum

Bounded VecElem

Since: base-4.10.0.0

Instance details

Defined in GHC.Enum

Bounded ()

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: () #

maxBound :: () #

Bounded All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: All #

maxBound :: All #

Bounded Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Any #

maxBound :: Any #

Bounded Associativity

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Bounded SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Bounded SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Bounded DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Bounded a => Bounded (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Dual a #

maxBound :: Dual a #

Bounded a => Bounded (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Sum a #

maxBound :: Sum a #

Bounded a => Bounded (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

(Bounded a, Bounded b) => Bounded (a, b)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b) #

maxBound :: (a, b) #

Bounded (Proxy t)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

minBound :: Proxy t #

maxBound :: Proxy t #

(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c) #

maxBound :: (a, b, c) #

Bounded a => Bounded (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

minBound :: Const a b #

maxBound :: Const a b #

(Applicative f, Bounded a) => Bounded (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

minBound :: Ap f a #

maxBound :: Ap f a #

(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d) #

maxBound :: (a, b, c, d) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e) #

maxBound :: (a, b, c, d, e) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f) #

maxBound :: (a, b, c, d, e, f) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g) #

maxBound :: (a, b, c, d, e, f, g) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h) #

maxBound :: (a, b, c, d, e, f, g, h) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i) #

maxBound :: (a, b, c, d, e, f, g, h, i) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j) #

maxBound :: (a, b, c, d, e, f, g, h, i, j) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

class Enum a where #

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

succ :: a -> a #

the successor of a value. For numeric types, succ adds 1.

pred :: a -> a #

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a #

Convert from an Int.

fromEnum :: a -> Int #

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a] #

Used in Haskell's translation of [n..] with [n..] = enumFrom n, a possible implementation being enumFrom n = n : enumFrom (succ n). For example:

  • enumFrom 4 :: [Integer] = [4,5,6,7,...]
  • enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]

enumFromThen :: a -> a -> [a] #

Used in Haskell's translation of [n,n'..] with [n,n'..] = enumFromThen n n', a possible implementation being enumFromThen n n' = n : n' : worker (f x) (f x n'), worker s v = v : worker s (s v), x = fromEnum n' - fromEnum n and f n y | n > 0 = f (n - 1) (succ y) | n < 0 = f (n + 1) (pred y) | otherwise = y For example:

  • enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
  • enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]

enumFromTo :: a -> a -> [a] #

Used in Haskell's translation of [n..m] with [n..m] = enumFromTo n m, a possible implementation being enumFromTo n m | n <= m = n : enumFromTo (succ n) m | otherwise = []. For example:

  • enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
  • enumFromTo 42 1 :: [Integer] = []

enumFromThenTo :: a -> a -> a -> [a] #

Used in Haskell's translation of [n,n'..m] with [n,n'..m] = enumFromThenTo n n' m, a possible implementation being enumFromThenTo n n' m = worker (f x) (c x) n m, x = fromEnum n' - fromEnum n, c x = bool (>=) ((x 0) f n y | n > 0 = f (n - 1) (succ y) | n < 0 = f (n + 1) (pred y) | otherwise = y and worker s c v m | c v m = v : worker s c (s v) m | otherwise = [] For example:

  • enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
  • enumFromThenTo 6 8 2 :: [Int] = []
Instances
Enum Bool

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Enum Char

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Enum Int

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Enum Integer

Since: base-2.1

Instance details

Defined in GHC.Enum

Enum Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Enum

Enum Ordering

Since: base-2.1

Instance details

Defined in GHC.Enum

Enum Word

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Enum VecCount

Since: base-4.10.0.0

Instance details

Defined in GHC.Enum

Enum VecElem

Since: base-4.10.0.0

Instance details

Defined in GHC.Enum

Enum ()

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: () -> () #

pred :: () -> () #

toEnum :: Int -> () #

fromEnum :: () -> Int #

enumFrom :: () -> [()] #

enumFromThen :: () -> () -> [()] #

enumFromTo :: () -> () -> [()] #

enumFromThenTo :: () -> () -> () -> [()] #

Enum Associativity

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Enum SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Enum SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Enum DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Integral a => Enum (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Enum (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

succ :: Proxy s -> Proxy s #

pred :: Proxy s -> Proxy s #

toEnum :: Int -> Proxy s #

fromEnum :: Proxy s -> Int #

enumFrom :: Proxy s -> [Proxy s] #

enumFromThen :: Proxy s -> Proxy s -> [Proxy s] #

enumFromTo :: Proxy s -> Proxy s -> [Proxy s] #

enumFromThenTo :: Proxy s -> Proxy s -> Proxy s -> [Proxy s] #

Enum a => Enum (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

succ :: Const a b -> Const a b #

pred :: Const a b -> Const a b #

toEnum :: Int -> Const a b #

fromEnum :: Const a b -> Int #

enumFrom :: Const a b -> [Const a b] #

enumFromThen :: Const a b -> Const a b -> [Const a b] #

enumFromTo :: Const a b -> Const a b -> [Const a b] #

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] #

Enum (f a) => Enum (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

succ :: Ap f a -> Ap f a #

pred :: Ap f a -> Ap f a #

toEnum :: Int -> Ap f a #

fromEnum :: Ap f a -> Int #

enumFrom :: Ap f a -> [Ap f a] #

enumFromThen :: Ap f a -> Ap f a -> [Ap f a] #

enumFromTo :: Ap f a -> Ap f a -> [Ap f a] #

enumFromThenTo :: Ap f a -> Ap f a -> Ap f a -> [Ap f a] #

Enum (f a) => Enum (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

succ :: Alt f a -> Alt f a #

pred :: Alt f a -> Alt f a #

toEnum :: Int -> Alt f a #

fromEnum :: Alt f a -> Int #

enumFrom :: Alt f a -> [Alt f a] #

enumFromThen :: Alt f a -> Alt f a -> [Alt f a] #

enumFromTo :: Alt f a -> Alt f a -> [Alt f a] #

enumFromThenTo :: Alt f a -> Alt f a -> Alt f a -> [Alt f a] #

class Eq a where #

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

The Haskell Report defines no laws for Eq. However, == is customarily expected to implement an equivalence relationship where two values comparing equal are indistinguishable by "public" functions, with a "public" function being one not allowing to see implementation details. For example, for a type representing non-normalised natural numbers modulo 100, a "public" function doesn't make the difference between 1 and 201. It is expected to have the following properties:

Reflexivity
x == x = True
Symmetry
x == y = y == x
Transitivity
if x == y && y == z = True, then x == z = True
Substitutivity
if x == y = True and f is a "public" function whose return type is an instance of Eq, then f x == f y = True
Negation
x /= y = not (x == y)

Minimal complete definition: either == or /=.

Minimal complete definition

(==) | (/=)

Methods

(==) :: a -> a -> Bool infix 4 #

(/=) :: a -> a -> Bool infix 4 #

Instances
Eq Bool 
Instance details

Defined in GHC.Classes

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Eq Char 
Instance details

Defined in GHC.Classes

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Eq Double

Note that due to the presence of NaN, Double's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Double)
False

Also note that Double's Eq instance does not satisfy substitutivity:

>>> 0 == (-0 :: Double)
True
>>> recip 0 == recip (-0 :: Double)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Eq Float

Note that due to the presence of NaN, Float's Eq instance does not satisfy reflexivity.

>>> 0/0 == (0/0 :: Float)
False

Also note that Float's Eq instance does not satisfy substitutivity:

>>> 0 == (-0 :: Float)
True
>>> recip 0 == recip (-0 :: Float)
False
Instance details

Defined in GHC.Classes

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Eq Int 
Instance details

Defined in GHC.Classes

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Eq Integer 
Instance details

Defined in GHC.Integer.Type

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Eq Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Natural

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Eq Ordering 
Instance details

Defined in GHC.Classes

Eq Word 
Instance details

Defined in GHC.Classes

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Eq () 
Instance details

Defined in GHC.Classes

Methods

(==) :: () -> () -> Bool #

(/=) :: () -> () -> Bool #

Eq TyCon 
Instance details

Defined in GHC.Classes

Methods

(==) :: TyCon -> TyCon -> Bool #

(/=) :: TyCon -> TyCon -> Bool #

Eq Module 
Instance details

Defined in GHC.Classes

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq TrName 
Instance details

Defined in GHC.Classes

Methods

(==) :: TrName -> TrName -> Bool #

(/=) :: TrName -> TrName -> Bool #

Eq Handle

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Handle.Types

Methods

(==) :: Handle -> Handle -> Bool #

(/=) :: Handle -> Handle -> Bool #

Eq BigNat 
Instance details

Defined in GHC.Integer.Type

Methods

(==) :: BigNat -> BigNat -> Bool #

(/=) :: BigNat -> BigNat -> Bool #

Eq SpecConstrAnnotation

Since: base-4.3.0.0

Instance details

Defined in GHC.Exts

Eq AsyncException

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Exception

Eq ArrayException

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Exception

Eq ExitCode 
Instance details

Defined in GHC.IO.Exception

Eq IOErrorType

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Eq BufferMode

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Handle.Types

Eq Newline

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Handle.Types

Methods

(==) :: Newline -> Newline -> Bool #

(/=) :: Newline -> Newline -> Bool #

Eq NewlineMode

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Handle.Types

Eq MaskingState

Since: base-4.3.0.0

Instance details

Defined in GHC.IO

Eq IOException

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Eq All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Eq Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Eq Fixity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Eq SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Eq SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Eq DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Eq SrcLoc

Since: base-4.9.0.0

Instance details

Defined in GHC.Stack.Types

Methods

(==) :: SrcLoc -> SrcLoc -> Bool #

(/=) :: SrcLoc -> SrcLoc -> Bool #

Eq Dimension Source # 
Instance details

Defined in Data.Matrix.Class

Eq a => Eq [a] 
Instance details

Defined in GHC.Classes

Methods

(==) :: [a] -> [a] -> Bool #

(/=) :: [a] -> [a] -> Bool #

Eq a => Eq (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Maybe

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Eq a => Eq (Ratio a)

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

(==) :: Ratio a -> Ratio a -> Bool #

(/=) :: Ratio a -> Ratio a -> Bool #

Eq (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Eq (FunPtr a) 
Instance details

Defined in GHC.Ptr

Methods

(==) :: FunPtr a -> FunPtr a -> Bool #

(/=) :: FunPtr a -> FunPtr a -> Bool #

Eq p => Eq (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: Par1 p -> Par1 p -> Bool #

(/=) :: Par1 p -> Par1 p -> Bool #

Eq a => Eq (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

(==) :: ZipList a -> ZipList a -> Bool #

(/=) :: ZipList a -> ZipList a -> Bool #

Eq a => Eq (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq a => Eq (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Eq a => Eq (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Eq a => Eq (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Eq a => Eq (Down a)

Since: base-4.6.0.0

Instance details

Defined in Data.Ord

Methods

(==) :: Down a -> Down a -> Bool #

(/=) :: Down a -> Down a -> Bool #

Eq a => Eq (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool #

(/=) :: NonEmpty a -> NonEmpty a -> Bool #

(Eq a, Eq b) => Eq (Either a b)

Since: base-2.1

Instance details

Defined in Data.Either

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

Eq (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: V1 p -> V1 p -> Bool #

(/=) :: V1 p -> V1 p -> Bool #

Eq (U1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: U1 p -> U1 p -> Bool #

(/=) :: U1 p -> U1 p -> Bool #

(Eq a, Eq b) => Eq (a, b) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b) -> (a, b) -> Bool #

(/=) :: (a, b) -> (a, b) -> Bool #

(Ix i, Eq e) => Eq (Array i e)

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

(==) :: Array i e -> Array i e -> Bool #

(/=) :: Array i e -> Array i e -> Bool #

Eq (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

(==) :: Proxy s -> Proxy s -> Bool #

(/=) :: Proxy s -> Proxy s -> Bool #

Eq (f p) => Eq (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: Rec1 f p -> Rec1 f p -> Bool #

(/=) :: Rec1 f p -> Rec1 f p -> Bool #

Eq (URec (Ptr ()) p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(/=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

Eq (URec Char p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec Char p -> URec Char p -> Bool #

(/=) :: URec Char p -> URec Char p -> Bool #

Eq (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec Double p -> URec Double p -> Bool #

(/=) :: URec Double p -> URec Double p -> Bool #

Eq (URec Float p) 
Instance details

Defined in GHC.Generics

Methods

(==) :: URec Float p -> URec Float p -> Bool #

(/=) :: URec Float p -> URec Float p -> Bool #

Eq (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec Int p -> URec Int p -> Bool #

(/=) :: URec Int p -> URec Int p -> Bool #

Eq (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: URec Word p -> URec Word p -> Bool #

(/=) :: URec Word p -> URec Word p -> Bool #

(Eq a, Eq b, Eq c) => Eq (a, b, c) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c) -> (a, b, c) -> Bool #

(/=) :: (a, b, c) -> (a, b, c) -> Bool #

Eq (STArray s i e)

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

(==) :: STArray s i e -> STArray s i e -> Bool #

(/=) :: STArray s i e -> STArray s i e -> Bool #

Eq a => Eq (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(==) :: Const a b -> Const a b -> Bool #

(/=) :: Const a b -> Const a b -> Bool #

Eq (f a) => Eq (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(==) :: Ap f a -> Ap f a -> Bool #

(/=) :: Ap f a -> Ap f a -> Bool #

Eq (f a) => Eq (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(==) :: Alt f a -> Alt f a -> Bool #

(/=) :: Alt f a -> Alt f a -> Bool #

Eq c => Eq (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: K1 i c p -> K1 i c p -> Bool #

(/=) :: K1 i c p -> K1 i c p -> Bool #

(Eq (f p), Eq (g p)) => Eq ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: (f :+: g) p -> (f :+: g) p -> Bool #

(/=) :: (f :+: g) p -> (f :+: g) p -> Bool #

(Eq (f p), Eq (g p)) => Eq ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: (f :*: g) p -> (f :*: g) p -> Bool #

(/=) :: (f :*: g) p -> (f :*: g) p -> Bool #

(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(/=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

Eq (f p) => Eq (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: M1 i c f p -> M1 i c f p -> Bool #

(/=) :: M1 i c f p -> M1 i c f p -> Bool #

Eq (f (g p)) => Eq ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: (f :.: g) p -> (f :.: g) p -> Bool #

(/=) :: (f :.: g) p -> (f :.: g) p -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(/=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(/=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(/=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 
Instance details

Defined in GHC.Classes

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

class Fractional a => Floating a where #

Trigonometric and hyperbolic functions and related functions.

The Haskell Report defines no laws for Floating. However, '(+)', '(*)' and exp are customarily expected to define an exponential field and have the following properties:

  • exp (a + b) = @exp a * exp b
  • exp (fromInteger 0) = fromInteger 1

Minimal complete definition

pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh

Methods

pi :: a #

exp :: a -> a #

log :: a -> a #

sqrt :: a -> a #

(**) :: a -> a -> a infixr 8 #

logBase :: a -> a -> a #

sin :: a -> a #

cos :: a -> a #

tan :: a -> a #

asin :: a -> a #

acos :: a -> a #

atan :: a -> a #

sinh :: a -> a #

cosh :: a -> a #

tanh :: a -> a #

asinh :: a -> a #

acosh :: a -> a #

atanh :: a -> a #

Instances
Floating Double

Since: base-2.1

Instance details

Defined in GHC.Float

Floating Float

Since: base-2.1

Instance details

Defined in GHC.Float

Floating a => Floating (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

class Num a => Fractional a where #

Fractional numbers, supporting real division.

The Haskell Report defines no laws for Fractional. However, '(+)' and '(*)' are customarily expected to define a division ring and have the following properties:

recip gives the multiplicative inverse
x * recip x = recip x * x = fromInteger 1

Note that it isn't customarily expected that a type instance of Fractional implement a field. However, all instances in base do.

Minimal complete definition

fromRational, (recip | (/))

Methods

(/) :: a -> a -> a infixl 7 #

fractional division

recip :: a -> a #

reciprocal fraction

fromRational :: Rational -> a #

Conversion from a Rational (that is Ratio Integer). A floating literal stands for an application of fromRational to a value of type Rational, so such literals have type (Fractional a) => a.

Instances
Integral a => Fractional (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

(/) :: Ratio a -> Ratio a -> Ratio a #

recip :: Ratio a -> Ratio a #

fromRational :: Rational -> Ratio a #

Fractional a => Fractional (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

class (Real a, Enum a) => Integral a where #

Integral numbers, supporting integer division.

The Haskell Report defines no laws for Integral. However, Integral instances are customarily expected to define a Euclidean domain and have the following properties for the 'div'/'mod' and 'quot'/'rem' pairs, given suitable Euclidean functions f and g:

  • x = y * quot x y + rem x y with rem x y = fromInteger 0 or g (rem x y) < g y
  • x = y * div x y + mod x y with mod x y = fromInteger 0 or f (mod x y) < f y

An example of a suitable Euclidean function, for Integer's instance, is abs.

Minimal complete definition

quotRem, toInteger

Methods

quot :: a -> a -> a infixl 7 #

integer division truncated toward zero

rem :: a -> a -> a infixl 7 #

integer remainder, satisfying

(x `quot` y)*y + (x `rem` y) == x

div :: a -> a -> a infixl 7 #

integer division truncated toward negative infinity

mod :: a -> a -> a infixl 7 #

integer modulus, satisfying

(x `div` y)*y + (x `mod` y) == x

quotRem :: a -> a -> (a, a) #

simultaneous quot and rem

divMod :: a -> a -> (a, a) #

simultaneous div and mod

toInteger :: a -> Integer #

conversion to Integer

Instances
Integral Int

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Integral Integer

Since: base-2.0.1

Instance details

Defined in GHC.Real

Integral Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Real

Integral Word

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Integral a => Integral (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b #

rem :: Const a b -> Const a b -> Const a b #

div :: Const a b -> Const a b -> Const a b #

mod :: Const a b -> Const a b -> Const a b #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) #

toInteger :: Const a b -> Integer #

class Applicative m => Monad (m :: Type -> Type) where #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following laws:

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1 #

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

(>>) :: m a -> m b -> m b infixl 1 #

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

return :: a -> m a #

Inject a value into the monadic type.

fail :: String -> m a #

Fail with a message. This operation is not part of the mathematical definition of a monad, but is invoked on pattern-match failure in a do expression.

As part of the MonadFail proposal (MFP), this function is moved to its own class MonadFail (see Control.Monad.Fail for more details). The definition here will be removed in a future release.

Instances
Monad []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] #

(>>) :: [a] -> [b] -> [b] #

return :: a -> [a] #

fail :: String -> [a] #

Monad Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Monad IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Monad Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Par1 a -> (a -> Par1 b) -> Par1 b #

(>>) :: Par1 a -> Par1 b -> Par1 b #

return :: a -> Par1 a #

fail :: String -> Par1 a #

Monad First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Monad Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Monad Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

fail :: String -> Dual a #

Monad Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

fail :: String -> Sum a #

Monad Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

fail :: String -> Product a #

Monad Down

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(>>=) :: Down a -> (a -> Down b) -> Down b #

(>>) :: Down a -> Down b -> Down b #

return :: a -> Down a #

fail :: String -> Down a #

Monad ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

(>>=) :: ReadP a -> (a -> ReadP b) -> ReadP b #

(>>) :: ReadP a -> ReadP b -> ReadP b #

return :: a -> ReadP a #

fail :: String -> ReadP a #

Monad NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

fail :: String -> NonEmpty a #

Monad P

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

(>>=) :: P a -> (a -> P b) -> P b #

(>>) :: P a -> P b -> P b #

return :: a -> P a #

fail :: String -> P a #

Monad (Either e)

Since: base-4.4.0.0

Instance details

Defined in Data.Either

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

fail :: String -> Either e a #

Monad (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b #

(>>) :: U1 a -> U1 b -> U1 b #

return :: a -> U1 a #

fail :: String -> U1 a #

Monoid a => Monad ((,) a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: (a, a0) -> (a0 -> (a, b)) -> (a, b) #

(>>) :: (a, a0) -> (a, b) -> (a, b) #

return :: a0 -> (a, a0) #

fail :: String -> (a, a0) #

Monad m => Monad (WrappedMonad m)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

(>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b #

(>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

return :: a -> WrappedMonad m a #

fail :: String -> WrappedMonad m a #

ArrowApply a => Monad (ArrowMonad a)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

(>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b #

(>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

return :: a0 -> ArrowMonad a a0 #

fail :: String -> ArrowMonad a a0 #

Monad (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b #

(>>) :: Proxy a -> Proxy b -> Proxy b #

return :: a -> Proxy a #

fail :: String -> Proxy a #

Monad f => Monad (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b #

return :: a -> Rec1 f a #

fail :: String -> Rec1 f a #

Monad f => Monad (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b #

(>>) :: Ap f a -> Ap f b -> Ap f b #

return :: a -> Ap f a #

fail :: String -> Ap f a #

Monad f => Monad (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b #

(>>) :: Alt f a -> Alt f b -> Alt f b #

return :: a -> Alt f a #

fail :: String -> Alt f a #

Monad ((->) r :: Type -> Type)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: (r -> a) -> (a -> r -> b) -> r -> b #

(>>) :: (r -> a) -> (r -> b) -> r -> b #

return :: a -> r -> a #

fail :: String -> r -> a #

(Monad f, Monad g) => Monad (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

return :: a -> (f :*: g) a #

fail :: String -> (f :*: g) a #

Monad f => Monad (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b #

return :: a -> M1 i c f a #

fail :: String -> M1 i c f a #

class Functor (f :: Type -> Type) where #

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:

fmap id  ==  id
fmap (f . g)  ==  fmap f . fmap g

The instances of Functor for lists, Maybe and IO satisfy these laws.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b #

(<$) :: a -> f b -> f a infixl 4 #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Instances
Functor []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> [a] -> [b] #

(<$) :: a -> [b] -> [a] #

Functor Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Functor IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Functor Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b #

(<$) :: a -> Par1 b -> Par1 a #

Functor ZipList

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b #

(<$) :: a -> ZipList b -> ZipList a #

Functor First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Functor Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Functor Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Functor Down

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

fmap :: (a -> b) -> Down a -> Down b #

(<$) :: a -> Down b -> Down a #

Functor ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> ReadP a -> ReadP b #

(<$) :: a -> ReadP b -> ReadP a #

Functor NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Functor Pair Source # 
Instance details

Defined in Data.Pair

Methods

fmap :: (a -> b) -> Pair a -> Pair b #

(<$) :: a -> Pair b -> Pair a #

Functor P

Since: base-4.8.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> P a -> P b #

(<$) :: a -> P b -> P a #

Functor (Either a)

Since: base-3.0

Instance details

Defined in Data.Either

Methods

fmap :: (a0 -> b) -> Either a a0 -> Either a b #

(<$) :: a0 -> Either a b -> Either a a0 #

Functor (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b #

(<$) :: a -> V1 b -> V1 a #

Functor (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> U1 a -> U1 b #

(<$) :: a -> U1 b -> U1 a #

Functor ((,) a)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a0 -> b) -> (a, a0) -> (a, b) #

(<$) :: a0 -> (a, b) -> (a, a0) #

Functor (Array i)

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

fmap :: (a -> b) -> Array i a -> Array i b #

(<$) :: a -> Array i b -> Array i a #

Monad m => Functor (WrappedMonad m)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

(<$) :: a -> WrappedMonad m b -> WrappedMonad m a #

Arrow a => Functor (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

(<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 #

Functor (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

fmap :: (a -> b) -> Proxy a -> Proxy b #

(<$) :: a -> Proxy b -> Proxy a #

Functor f => Functor (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b #

(<$) :: a -> Rec1 f b -> Rec1 f a #

Functor (URec Char :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b #

(<$) :: a -> URec Char b -> URec Char a #

Functor (URec Double :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Functor (URec Float :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Functor (URec Int :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b #

(<$) :: a -> URec Int b -> URec Int a #

Functor (URec Word :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Functor (URec (Ptr ()) :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a #

Arrow a => Functor (WrappedArrow a b)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 #

(<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 #

Functor (Const m :: Type -> Type)

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b #

(<$) :: a -> Const m b -> Const m a #

Functor f => Functor (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b #

(<$) :: a -> Ap f b -> Ap f a #

Functor f => Functor (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b #

(<$) :: a -> Alt f b -> Alt f a #

(Functor f, Functor g) => Functor (O f g) Source # 
Instance details

Defined in Algebra.RingUtils

Methods

fmap :: (a -> b) -> O f g a -> O f g b #

(<$) :: a -> O f g b -> O f g a #

Functor ((->) r :: Type -> Type)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> (r -> a) -> r -> b #

(<$) :: a -> (r -> b) -> r -> a #

Functor (K1 i c :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b #

(<$) :: a -> K1 i c b -> K1 i c a #

(Functor f, Functor g) => Functor (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b #

(<$) :: a -> (f :+: g) b -> (f :+: g) a #

(Functor f, Functor g) => Functor (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b #

(<$) :: a -> (f :*: g) b -> (f :*: g) a #

Functor f => Functor (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b #

(<$) :: a -> M1 i c f b -> M1 i c f a #

(Functor f, Functor g) => Functor (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b #

(<$) :: a -> (f :.: g) b -> (f :.: g) a #

class Num a where #

Basic numeric class.

The Haskell Report defines no laws for Num. However, '(+)' and '(*)' are customarily expected to define a ring and have the following properties:

Associativity of (+)
(x + y) + z = x + (y + z)
Commutativity of (+)
x + y = y + x
fromInteger 0 is the additive identity
x + fromInteger 0 = x
negate gives the additive inverse
x + negate x = fromInteger 0
Associativity of (*)
(x * y) * z = x * (y * z)
fromInteger 1 is the multiplicative identity
x * fromInteger 1 = x and fromInteger 1 * x = x
Distributivity of (*) with respect to (+)
a * (b + c) = (a * b) + (a * c) and (b + c) * a = (b * a) + (c * a)

Note that it isn't customarily expected that a type instance of both Num and Ord implement an ordered ring. Indeed, in base only Integer and Rational do.

Minimal complete definition

(+), (*), abs, signum, fromInteger, (negate | (-))

Methods

(-) :: a -> a -> a infixl 6 #

negate :: a -> a #

Unary negation.

abs :: a -> a #

Absolute value.

signum :: a -> a #

Sign of a number. The functions abs and signum should satisfy the law:

abs x * signum x == x

For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).

fromInteger :: Integer -> a #

Conversion from an Integer. An integer literal represents the application of the function fromInteger to the appropriate value of type Integer, so such literals have type (Num a) => a.

Instances
Num Int

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Num Integer

Since: base-2.1

Instance details

Defined in GHC.Num

Num Natural

Note that Natural's Num instance isn't a ring: no element but 0 has an additive inverse. It is a semiring though.

Since: base-4.8.0.0

Instance details

Defined in GHC.Num

Num Word

Since: base-2.1

Instance details

Defined in GHC.Num

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

Integral a => Num (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

(+) :: Ratio a -> Ratio a -> Ratio a #

(-) :: Ratio a -> Ratio a -> Ratio a #

(*) :: Ratio a -> Ratio a -> Ratio a #

negate :: Ratio a -> Ratio a #

abs :: Ratio a -> Ratio a #

signum :: Ratio a -> Ratio a #

fromInteger :: Integer -> Ratio a #

Num a => Num (Sum a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Num a => Num (Product a)

Since: base-4.7.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Num a => Num (Down a)

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(+) :: Down a -> Down a -> Down a #

(-) :: Down a -> Down a -> Down a #

(*) :: Down a -> Down a -> Down a #

negate :: Down a -> Down a #

abs :: Down a -> Down a #

signum :: Down a -> Down a #

fromInteger :: Integer -> Down a #

Num a => Num (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b #

(-) :: Const a b -> Const a b -> Const a b #

(*) :: Const a b -> Const a b -> Const a b #

negate :: Const a b -> Const a b #

abs :: Const a b -> Const a b #

signum :: Const a b -> Const a b #

fromInteger :: Integer -> Const a b #

(Applicative f, Num a) => Num (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(+) :: Ap f a -> Ap f a -> Ap f a #

(-) :: Ap f a -> Ap f a -> Ap f a #

(*) :: Ap f a -> Ap f a -> Ap f a #

negate :: Ap f a -> Ap f a #

abs :: Ap f a -> Ap f a #

signum :: Ap f a -> Ap f a #

fromInteger :: Integer -> Ap f a #

Num (f a) => Num (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(+) :: Alt f a -> Alt f a -> Alt f a #

(-) :: Alt f a -> Alt f a -> Alt f a #

(*) :: Alt f a -> Alt f a -> Alt f a #

negate :: Alt f a -> Alt f a #

abs :: Alt f a -> Alt f a #

signum :: Alt f a -> Alt f a #

fromInteger :: Integer -> Alt f a #

class Eq a => Ord a where #

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types are in Ord. The declared order of the constructors in the data declaration determines the ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the precise ordering of two objects.

The Haskell Report defines no laws for Ord. However, <= is customarily expected to implement a non-strict partial order and have the following properties:

Transitivity
if x <= y && y <= z = True, then x <= z = True
Reflexivity
x <= x = True
Antisymmetry
if x <= y && y <= x = True, then x == y = True

Note that the following operator interactions are expected to hold:

  1. x >= y = y <= x
  2. x < y = x <= y && x /= y
  3. x > y = y < x
  4. x < y = compare x y == LT
  5. x > y = compare x y == GT
  6. x == y = compare x y == EQ
  7. min x y == if x <= y then x else y = True
  8. max x y == if x >= y then x else y = True

Minimal complete definition: either compare or <=. Using compare can be more efficient for complex types.

Minimal complete definition

compare | (<=)

Methods

compare :: a -> a -> Ordering #

(<) :: a -> a -> Bool infix 4 #

(<=) :: a -> a -> Bool infix 4 #

(>) :: a -> a -> Bool infix 4 #

(>=) :: a -> a -> Bool infix 4 #

max :: a -> a -> a #

min :: a -> a -> a #

Instances
Ord Bool 
Instance details

Defined in GHC.Classes

Methods

compare :: Bool -> Bool -> Ordering #

(<) :: Bool -> Bool -> Bool #

(<=) :: Bool -> Bool -> Bool #

(>) :: Bool -> Bool -> Bool #

(>=) :: Bool -> Bool -> Bool #

max :: Bool -> Bool -> Bool #

min :: Bool -> Bool -> Bool #

Ord Char 
Instance details

Defined in GHC.Classes

Methods

compare :: Char -> Char -> Ordering #

(<) :: Char -> Char -> Bool #

(<=) :: Char -> Char -> Bool #

(>) :: Char -> Char -> Bool #

(>=) :: Char -> Char -> Bool #

max :: Char -> Char -> Char #

min :: Char -> Char -> Char #

Ord Double

Note that due to the presence of NaN, Double's Ord instance does not satisfy reflexivity.

>>> 0/0 <= (0/0 :: Double)
False

Also note that, due to the same, Ord's operator interactions are not respected by Double's instance:

>>> (0/0 :: Double) > 1
False
>>> compare (0/0 :: Double) 1
GT
Instance details

Defined in GHC.Classes

Ord Float

Note that due to the presence of NaN, Float's Ord instance does not satisfy reflexivity.

>>> 0/0 <= (0/0 :: Float)
False

Also note that, due to the same, Ord's operator interactions are not respected by Float's instance:

>>> (0/0 :: Float) > 1
False
>>> compare (0/0 :: Float) 1
GT
Instance details

Defined in GHC.Classes

Methods

compare :: Float -> Float -> Ordering #

(<) :: Float -> Float -> Bool #

(<=) :: Float -> Float -> Bool #

(>) :: Float -> Float -> Bool #

(>=) :: Float -> Float -> Bool #

max :: Float -> Float -> Float #

min :: Float -> Float -> Float #

Ord Int 
Instance details

Defined in GHC.Classes

Methods

compare :: Int -> Int -> Ordering #

(<) :: Int -> Int -> Bool #

(<=) :: Int -> Int -> Bool #

(>) :: Int -> Int -> Bool #

(>=) :: Int -> Int -> Bool #

max :: Int -> Int -> Int #

min :: Int -> Int -> Int #

Ord Integer 
Instance details

Defined in GHC.Integer.Type

Ord Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Natural

Ord Ordering 
Instance details

Defined in GHC.Classes

Ord Word 
Instance details

Defined in GHC.Classes

Methods

compare :: Word -> Word -> Ordering #

(<) :: Word -> Word -> Bool #

(<=) :: Word -> Word -> Bool #

(>) :: Word -> Word -> Bool #

(>=) :: Word -> Word -> Bool #

max :: Word -> Word -> Word #

min :: Word -> Word -> Word #

Ord () 
Instance details

Defined in GHC.Classes

Methods

compare :: () -> () -> Ordering #

(<) :: () -> () -> Bool #

(<=) :: () -> () -> Bool #

(>) :: () -> () -> Bool #

(>=) :: () -> () -> Bool #

max :: () -> () -> () #

min :: () -> () -> () #

Ord TyCon 
Instance details

Defined in GHC.Classes

Methods

compare :: TyCon -> TyCon -> Ordering #

(<) :: TyCon -> TyCon -> Bool #

(<=) :: TyCon -> TyCon -> Bool #

(>) :: TyCon -> TyCon -> Bool #

(>=) :: TyCon -> TyCon -> Bool #

max :: TyCon -> TyCon -> TyCon #

min :: TyCon -> TyCon -> TyCon #

Ord BigNat 
Instance details

Defined in GHC.Integer.Type

Ord AsyncException

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Exception

Ord ArrayException

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Exception

Ord ExitCode 
Instance details

Defined in GHC.IO.Exception

Ord BufferMode

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Handle.Types

Ord Newline

Since: base-4.3.0.0

Instance details

Defined in GHC.IO.Handle.Types

Ord NewlineMode

Since: base-4.3.0.0

Instance details

Defined in GHC.IO.Handle.Types

Ord All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: All -> All -> Ordering #

(<) :: All -> All -> Bool #

(<=) :: All -> All -> Bool #

(>) :: All -> All -> Bool #

(>=) :: All -> All -> Bool #

max :: All -> All -> All #

min :: All -> All -> All #

Ord Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Any -> Any -> Ordering #

(<) :: Any -> Any -> Bool #

(<=) :: Any -> Any -> Bool #

(>) :: Any -> Any -> Bool #

(>=) :: Any -> Any -> Bool #

max :: Any -> Any -> Any #

min :: Any -> Any -> Any #

Ord Fixity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Ord Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Ord SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Ord SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Ord DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Ord a => Ord [a] 
Instance details

Defined in GHC.Classes

Methods

compare :: [a] -> [a] -> Ordering #

(<) :: [a] -> [a] -> Bool #

(<=) :: [a] -> [a] -> Bool #

(>) :: [a] -> [a] -> Bool #

(>=) :: [a] -> [a] -> Bool #

max :: [a] -> [a] -> [a] #

min :: [a] -> [a] -> [a] #

Ord a => Ord (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Maybe

Methods

compare :: Maybe a -> Maybe a -> Ordering #

(<) :: Maybe a -> Maybe a -> Bool #

(<=) :: Maybe a -> Maybe a -> Bool #

(>) :: Maybe a -> Maybe a -> Bool #

(>=) :: Maybe a -> Maybe a -> Bool #

max :: Maybe a -> Maybe a -> Maybe a #

min :: Maybe a -> Maybe a -> Maybe a #

Integral a => Ord (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

compare :: Ratio a -> Ratio a -> Ordering #

(<) :: Ratio a -> Ratio a -> Bool #

(<=) :: Ratio a -> Ratio a -> Bool #

(>) :: Ratio a -> Ratio a -> Bool #

(>=) :: Ratio a -> Ratio a -> Bool #

max :: Ratio a -> Ratio a -> Ratio a #

min :: Ratio a -> Ratio a -> Ratio a #

Ord (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

compare :: Ptr a -> Ptr a -> Ordering #

(<) :: Ptr a -> Ptr a -> Bool #

(<=) :: Ptr a -> Ptr a -> Bool #

(>) :: Ptr a -> Ptr a -> Bool #

(>=) :: Ptr a -> Ptr a -> Bool #

max :: Ptr a -> Ptr a -> Ptr a #

min :: Ptr a -> Ptr a -> Ptr a #

Ord (FunPtr a) 
Instance details

Defined in GHC.Ptr

Methods

compare :: FunPtr a -> FunPtr a -> Ordering #

(<) :: FunPtr a -> FunPtr a -> Bool #

(<=) :: FunPtr a -> FunPtr a -> Bool #

(>) :: FunPtr a -> FunPtr a -> Bool #

(>=) :: FunPtr a -> FunPtr a -> Bool #

max :: FunPtr a -> FunPtr a -> FunPtr a #

min :: FunPtr a -> FunPtr a -> FunPtr a #

Ord p => Ord (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: Par1 p -> Par1 p -> Ordering #

(<) :: Par1 p -> Par1 p -> Bool #

(<=) :: Par1 p -> Par1 p -> Bool #

(>) :: Par1 p -> Par1 p -> Bool #

(>=) :: Par1 p -> Par1 p -> Bool #

max :: Par1 p -> Par1 p -> Par1 p #

min :: Par1 p -> Par1 p -> Par1 p #

Ord a => Ord (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

compare :: ZipList a -> ZipList a -> Ordering #

(<) :: ZipList a -> ZipList a -> Bool #

(<=) :: ZipList a -> ZipList a -> Bool #

(>) :: ZipList a -> ZipList a -> Bool #

(>=) :: ZipList a -> ZipList a -> Bool #

max :: ZipList a -> ZipList a -> ZipList a #

min :: ZipList a -> ZipList a -> ZipList a #

Ord a => Ord (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

Ord a => Ord (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

Ord a => Ord (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Dual a -> Dual a -> Ordering #

(<) :: Dual a -> Dual a -> Bool #

(<=) :: Dual a -> Dual a -> Bool #

(>) :: Dual a -> Dual a -> Bool #

(>=) :: Dual a -> Dual a -> Bool #

max :: Dual a -> Dual a -> Dual a #

min :: Dual a -> Dual a -> Dual a #

Ord a => Ord (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Sum a -> Sum a -> Ordering #

(<) :: Sum a -> Sum a -> Bool #

(<=) :: Sum a -> Sum a -> Bool #

(>) :: Sum a -> Sum a -> Bool #

(>=) :: Sum a -> Sum a -> Bool #

max :: Sum a -> Sum a -> Sum a #

min :: Sum a -> Sum a -> Sum a #

Ord a => Ord (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Product a -> Product a -> Ordering #

(<) :: Product a -> Product a -> Bool #

(<=) :: Product a -> Product a -> Bool #

(>) :: Product a -> Product a -> Bool #

(>=) :: Product a -> Product a -> Bool #

max :: Product a -> Product a -> Product a #

min :: Product a -> Product a -> Product a #

Ord a => Ord (Down a)

Since: base-4.6.0.0

Instance details

Defined in Data.Ord

Methods

compare :: Down a -> Down a -> Ordering #

(<) :: Down a -> Down a -> Bool #

(<=) :: Down a -> Down a -> Bool #

(>) :: Down a -> Down a -> Bool #

(>=) :: Down a -> Down a -> Bool #

max :: Down a -> Down a -> Down a #

min :: Down a -> Down a -> Down a #

Ord a => Ord (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

compare :: NonEmpty a -> NonEmpty a -> Ordering #

(<) :: NonEmpty a -> NonEmpty a -> Bool #

(<=) :: NonEmpty a -> NonEmpty a -> Bool #

(>) :: NonEmpty a -> NonEmpty a -> Bool #

(>=) :: NonEmpty a -> NonEmpty a -> Bool #

max :: NonEmpty a -> NonEmpty a -> NonEmpty a #

min :: NonEmpty a -> NonEmpty a -> NonEmpty a #

(Ord a, Ord b) => Ord (Either a b)

Since: base-2.1

Instance details

Defined in Data.Either

Methods

compare :: Either a b -> Either a b -> Ordering #

(<) :: Either a b -> Either a b -> Bool #

(<=) :: Either a b -> Either a b -> Bool #

(>) :: Either a b -> Either a b -> Bool #

(>=) :: Either a b -> Either a b -> Bool #

max :: Either a b -> Either a b -> Either a b #

min :: Either a b -> Either a b -> Either a b #

Ord (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: V1 p -> V1 p -> Ordering #

(<) :: V1 p -> V1 p -> Bool #

(<=) :: V1 p -> V1 p -> Bool #

(>) :: V1 p -> V1 p -> Bool #

(>=) :: V1 p -> V1 p -> Bool #

max :: V1 p -> V1 p -> V1 p #

min :: V1 p -> V1 p -> V1 p #

Ord (U1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: U1 p -> U1 p -> Ordering #

(<) :: U1 p -> U1 p -> Bool #

(<=) :: U1 p -> U1 p -> Bool #

(>) :: U1 p -> U1 p -> Bool #

(>=) :: U1 p -> U1 p -> Bool #

max :: U1 p -> U1 p -> U1 p #

min :: U1 p -> U1 p -> U1 p #

(Ord a, Ord b) => Ord (a, b) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b) -> (a, b) -> Ordering #

(<) :: (a, b) -> (a, b) -> Bool #

(<=) :: (a, b) -> (a, b) -> Bool #

(>) :: (a, b) -> (a, b) -> Bool #

(>=) :: (a, b) -> (a, b) -> Bool #

max :: (a, b) -> (a, b) -> (a, b) #

min :: (a, b) -> (a, b) -> (a, b) #

(Ix i, Ord e) => Ord (Array i e)

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

compare :: Array i e -> Array i e -> Ordering #

(<) :: Array i e -> Array i e -> Bool #

(<=) :: Array i e -> Array i e -> Bool #

(>) :: Array i e -> Array i e -> Bool #

(>=) :: Array i e -> Array i e -> Bool #

max :: Array i e -> Array i e -> Array i e #

min :: Array i e -> Array i e -> Array i e #

Ord (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

compare :: Proxy s -> Proxy s -> Ordering #

(<) :: Proxy s -> Proxy s -> Bool #

(<=) :: Proxy s -> Proxy s -> Bool #

(>) :: Proxy s -> Proxy s -> Bool #

(>=) :: Proxy s -> Proxy s -> Bool #

max :: Proxy s -> Proxy s -> Proxy s #

min :: Proxy s -> Proxy s -> Proxy s #

Ord (f p) => Ord (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: Rec1 f p -> Rec1 f p -> Ordering #

(<) :: Rec1 f p -> Rec1 f p -> Bool #

(<=) :: Rec1 f p -> Rec1 f p -> Bool #

(>) :: Rec1 f p -> Rec1 f p -> Bool #

(>=) :: Rec1 f p -> Rec1 f p -> Bool #

max :: Rec1 f p -> Rec1 f p -> Rec1 f p #

min :: Rec1 f p -> Rec1 f p -> Rec1 f p #

Ord (URec (Ptr ()) p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering #

(<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

(>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool #

max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p #

min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p #

Ord (URec Char p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec Char p -> URec Char p -> Ordering #

(<) :: URec Char p -> URec Char p -> Bool #

(<=) :: URec Char p -> URec Char p -> Bool #

(>) :: URec Char p -> URec Char p -> Bool #

(>=) :: URec Char p -> URec Char p -> Bool #

max :: URec Char p -> URec Char p -> URec Char p #

min :: URec Char p -> URec Char p -> URec Char p #

Ord (URec Double p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec Double p -> URec Double p -> Ordering #

(<) :: URec Double p -> URec Double p -> Bool #

(<=) :: URec Double p -> URec Double p -> Bool #

(>) :: URec Double p -> URec Double p -> Bool #

(>=) :: URec Double p -> URec Double p -> Bool #

max :: URec Double p -> URec Double p -> URec Double p #

min :: URec Double p -> URec Double p -> URec Double p #

Ord (URec Float p) 
Instance details

Defined in GHC.Generics

Methods

compare :: URec Float p -> URec Float p -> Ordering #

(<) :: URec Float p -> URec Float p -> Bool #

(<=) :: URec Float p -> URec Float p -> Bool #

(>) :: URec Float p -> URec Float p -> Bool #

(>=) :: URec Float p -> URec Float p -> Bool #

max :: URec Float p -> URec Float p -> URec Float p #

min :: URec Float p -> URec Float p -> URec Float p #

Ord (URec Int p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec Int p -> URec Int p -> Ordering #

(<) :: URec Int p -> URec Int p -> Bool #

(<=) :: URec Int p -> URec Int p -> Bool #

(>) :: URec Int p -> URec Int p -> Bool #

(>=) :: URec Int p -> URec Int p -> Bool #

max :: URec Int p -> URec Int p -> URec Int p #

min :: URec Int p -> URec Int p -> URec Int p #

Ord (URec Word p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: URec Word p -> URec Word p -> Ordering #

(<) :: URec Word p -> URec Word p -> Bool #

(<=) :: URec Word p -> URec Word p -> Bool #

(>) :: URec Word p -> URec Word p -> Bool #

(>=) :: URec Word p -> URec Word p -> Bool #

max :: URec Word p -> URec Word p -> URec Word p #

min :: URec Word p -> URec Word p -> URec Word p #

(Ord a, Ord b, Ord c) => Ord (a, b, c) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c) -> (a, b, c) -> Ordering #

(<) :: (a, b, c) -> (a, b, c) -> Bool #

(<=) :: (a, b, c) -> (a, b, c) -> Bool #

(>) :: (a, b, c) -> (a, b, c) -> Bool #

(>=) :: (a, b, c) -> (a, b, c) -> Bool #

max :: (a, b, c) -> (a, b, c) -> (a, b, c) #

min :: (a, b, c) -> (a, b, c) -> (a, b, c) #

Ord a => Ord (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

compare :: Const a b -> Const a b -> Ordering #

(<) :: Const a b -> Const a b -> Bool #

(<=) :: Const a b -> Const a b -> Bool #

(>) :: Const a b -> Const a b -> Bool #

(>=) :: Const a b -> Const a b -> Bool #

max :: Const a b -> Const a b -> Const a b #

min :: Const a b -> Const a b -> Const a b #

Ord (f a) => Ord (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

compare :: Ap f a -> Ap f a -> Ordering #

(<) :: Ap f a -> Ap f a -> Bool #

(<=) :: Ap f a -> Ap f a -> Bool #

(>) :: Ap f a -> Ap f a -> Bool #

(>=) :: Ap f a -> Ap f a -> Bool #

max :: Ap f a -> Ap f a -> Ap f a #

min :: Ap f a -> Ap f a -> Ap f a #

Ord (f a) => Ord (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

compare :: Alt f a -> Alt f a -> Ordering #

(<) :: Alt f a -> Alt f a -> Bool #

(<=) :: Alt f a -> Alt f a -> Bool #

(>) :: Alt f a -> Alt f a -> Bool #

(>=) :: Alt f a -> Alt f a -> Bool #

max :: Alt f a -> Alt f a -> Alt f a #

min :: Alt f a -> Alt f a -> Alt f a #

Ord c => Ord (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: K1 i c p -> K1 i c p -> Ordering #

(<) :: K1 i c p -> K1 i c p -> Bool #

(<=) :: K1 i c p -> K1 i c p -> Bool #

(>) :: K1 i c p -> K1 i c p -> Bool #

(>=) :: K1 i c p -> K1 i c p -> Bool #

max :: K1 i c p -> K1 i c p -> K1 i c p #

min :: K1 i c p -> K1 i c p -> K1 i c p #

(Ord (f p), Ord (g p)) => Ord ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: (f :+: g) p -> (f :+: g) p -> Ordering #

(<) :: (f :+: g) p -> (f :+: g) p -> Bool #

(<=) :: (f :+: g) p -> (f :+: g) p -> Bool #

(>) :: (f :+: g) p -> (f :+: g) p -> Bool #

(>=) :: (f :+: g) p -> (f :+: g) p -> Bool #

max :: (f :+: g) p -> (f :+: g) p -> (f :+: g) p #

min :: (f :+: g) p -> (f :+: g) p -> (f :+: g) p #

(Ord (f p), Ord (g p)) => Ord ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: (f :*: g) p -> (f :*: g) p -> Ordering #

(<) :: (f :*: g) p -> (f :*: g) p -> Bool #

(<=) :: (f :*: g) p -> (f :*: g) p -> Bool #

(>) :: (f :*: g) p -> (f :*: g) p -> Bool #

(>=) :: (f :*: g) p -> (f :*: g) p -> Bool #

max :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

min :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d) -> (a, b, c, d) -> Ordering #

(<) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(<=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(>) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(>=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

max :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

min :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

Ord (f p) => Ord (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: M1 i c f p -> M1 i c f p -> Ordering #

(<) :: M1 i c f p -> M1 i c f p -> Bool #

(<=) :: M1 i c f p -> M1 i c f p -> Bool #

(>) :: M1 i c f p -> M1 i c f p -> Bool #

(>=) :: M1 i c f p -> M1 i c f p -> Bool #

max :: M1 i c f p -> M1 i c f p -> M1 i c f p #

min :: M1 i c f p -> M1 i c f p -> M1 i c f p #

Ord (f (g p)) => Ord ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: (f :.: g) p -> (f :.: g) p -> Ordering #

(<) :: (f :.: g) p -> (f :.: g) p -> Bool #

(<=) :: (f :.: g) p -> (f :.: g) p -> Bool #

(>) :: (f :.: g) p -> (f :.: g) p -> Bool #

(>=) :: (f :.: g) p -> (f :.: g) p -> Bool #

max :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

min :: (f :.: g) p -> (f :.: g) p -> (f :.: g) p #

(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering #

(<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering #

(<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) #

min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering #

(<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) #

min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) #

min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) #

min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) #

min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) #

min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 
Instance details

Defined in GHC.Classes

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

class Read a where #

Parsing of Strings, producing values.

Derived instances of Read make the following assumptions, which derived instances of Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Read in Haskell 2010 is equivalent to

instance (Read a) => Read (Tree a) where

        readsPrec d r =  readParen (d > app_prec)
                         (\r -> [(Leaf m,t) |
                                 ("Leaf",s) <- lex r,
                                 (m,t) <- readsPrec (app_prec+1) s]) r

                      ++ readParen (d > up_prec)
                         (\r -> [(u:^:v,w) |
                                 (u,s) <- readsPrec (up_prec+1) r,
                                 (":^:",t) <- lex s,
                                 (v,w) <- readsPrec (up_prec+1) t]) r

          where app_prec = 10
                up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

instance (Read a) => Read (Tree a) where

        readPrec = parens $ (prec app_prec $ do
                                 Ident "Leaf" <- lexP
                                 m <- step readPrec
                                 return (Leaf m))

                     +++ (prec up_prec $ do
                                 u <- step readPrec
                                 Symbol ":^:" <- lexP
                                 v <- step readPrec
                                 return (u :^: v))

          where app_prec = 10
                up_prec = 5

        readListPrec = readListPrecDefault

Why do both readsPrec and readPrec exist, and why does GHC opt to implement readPrec in derived Read instances instead of readsPrec? The reason is that readsPrec is based on the ReadS type, and although ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient parser data structure.

readPrec, on the other hand, is based on a much more efficient ReadPrec datatype (a.k.a "new-style parsers"), but its definition relies on the use of the RankNTypes language extension. Therefore, readPrec (and its cousin, readListPrec) are marked as GHC-only. Nevertheless, it is recommended to use readPrec instead of readsPrec whenever possible for the efficiency improvements it brings.

As mentioned above, derived Read instances in GHC will implement readPrec instead of readsPrec. The default implementations of readsPrec (and its cousin, readList) will simply use readPrec under the hood. If you are writing a Read instance by hand, it is recommended to write it like so:

instance Read T where
  readPrec     = ...
  readListPrec = readListPrecDefault

Minimal complete definition

readsPrec | readPrec

Methods

readsPrec #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> ReadS a 

attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

readList :: ReadS [a] #

The method readList is provided to allow the programmer to give a specialised way of parsing lists of values. For example, this is used by the predefined Read instance of the Char type, where values of type String should be are expected to use double quotes, rather than square brackets.

Instances
Read Bool

Since: base-2.1

Instance details

Defined in GHC.Read

Read Char

Since: base-2.1

Instance details

Defined in GHC.Read

Read Double

Since: base-2.1

Instance details

Defined in GHC.Read

Read Float

Since: base-2.1

Instance details

Defined in GHC.Read

Read Int

Since: base-2.1

Instance details

Defined in GHC.Read

Read Integer

Since: base-2.1

Instance details

Defined in GHC.Read

Read Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Read

Read Ordering

Since: base-2.1

Instance details

Defined in GHC.Read

Read Word

Since: base-4.5.0.0

Instance details

Defined in GHC.Read

Read Word8

Since: base-2.1

Instance details

Defined in GHC.Read

Read Word16

Since: base-2.1

Instance details

Defined in GHC.Read

Read Word32

Since: base-2.1

Instance details

Defined in GHC.Read

Read Word64

Since: base-2.1

Instance details

Defined in GHC.Read

Read ()

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS () #

readList :: ReadS [()] #

readPrec :: ReadPrec () #

readListPrec :: ReadPrec [()] #

Read ExitCode 
Instance details

Defined in GHC.IO.Exception

Read BufferMode

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Handle.Types

Read Newline

Since: base-4.3.0.0

Instance details

Defined in GHC.IO.Handle.Types

Read NewlineMode

Since: base-4.3.0.0

Instance details

Defined in GHC.IO.Handle.Types

Read All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read Fixity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Read Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Read SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Read SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Read DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Read Lexeme

Since: base-2.1

Instance details

Defined in GHC.Read

Read GeneralCategory

Since: base-2.1

Instance details

Defined in GHC.Read

Read a => Read [a]

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS [a] #

readList :: ReadS [[a]] #

readPrec :: ReadPrec [a] #

readListPrec :: ReadPrec [[a]] #

Read a => Read (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Read

(Integral a, Read a) => Read (Ratio a)

Since: base-2.1

Instance details

Defined in GHC.Read

Read p => Read (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Read a => Read (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Read a => Read (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Read a => Read (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Read a => Read (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read a => Read (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read a => Read (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read a => Read (Down a)

Since: base-4.7.0.0

Instance details

Defined in Data.Ord

Read a => Read (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Read

(Read a, Read b) => Read (Either a b)

Since: base-3.0

Instance details

Defined in Data.Either

Read (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Read (U1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

(Read a, Read b) => Read (a, b)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b) #

readList :: ReadS [(a, b)] #

readPrec :: ReadPrec (a, b) #

readListPrec :: ReadPrec [(a, b)] #

(Ix a, Read a, Read b) => Read (Array a b)

Since: base-2.1

Instance details

Defined in GHC.Read

Read (Proxy t)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Read (f p) => Read (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS (Rec1 f p) #

readList :: ReadS [Rec1 f p] #

readPrec :: ReadPrec (Rec1 f p) #

readListPrec :: ReadPrec [Rec1 f p] #

(Read a, Read b, Read c) => Read (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c) #

readList :: ReadS [(a, b, c)] #

readPrec :: ReadPrec (a, b, c) #

readListPrec :: ReadPrec [(a, b, c)] #

Read a => Read (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the runConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Read (f a) => Read (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

readsPrec :: Int -> ReadS (Ap f a) #

readList :: ReadS [Ap f a] #

readPrec :: ReadPrec (Ap f a) #

readListPrec :: ReadPrec [Ap f a] #

Read (f a) => Read (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

readsPrec :: Int -> ReadS (Alt f a) #

readList :: ReadS [Alt f a] #

readPrec :: ReadPrec (Alt f a) #

readListPrec :: ReadPrec [Alt f a] #

Read c => Read (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS (K1 i c p) #

readList :: ReadS [K1 i c p] #

readPrec :: ReadPrec (K1 i c p) #

readListPrec :: ReadPrec [K1 i c p] #

(Read (f p), Read (g p)) => Read ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS ((f :+: g) p) #

readList :: ReadS [(f :+: g) p] #

readPrec :: ReadPrec ((f :+: g) p) #

readListPrec :: ReadPrec [(f :+: g) p] #

(Read (f p), Read (g p)) => Read ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS ((f :*: g) p) #

readList :: ReadS [(f :*: g) p] #

readPrec :: ReadPrec ((f :*: g) p) #

readListPrec :: ReadPrec [(f :*: g) p] #

(Read a, Read b, Read c, Read d) => Read (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d) #

readList :: ReadS [(a, b, c, d)] #

readPrec :: ReadPrec (a, b, c, d) #

readListPrec :: ReadPrec [(a, b, c, d)] #

Read (f p) => Read (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS (M1 i c f p) #

readList :: ReadS [M1 i c f p] #

readPrec :: ReadPrec (M1 i c f p) #

readListPrec :: ReadPrec [M1 i c f p] #

Read (f (g p)) => Read ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS ((f :.: g) p) #

readList :: ReadS [(f :.: g) p] #

readPrec :: ReadPrec ((f :.: g) p) #

readListPrec :: ReadPrec [(f :.: g) p] #

(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e) #

readList :: ReadS [(a, b, c, d, e)] #

readPrec :: ReadPrec (a, b, c, d, e) #

readListPrec :: ReadPrec [(a, b, c, d, e)] #

(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f) #

readList :: ReadS [(a, b, c, d, e, f)] #

readPrec :: ReadPrec (a, b, c, d, e, f) #

readListPrec :: ReadPrec [(a, b, c, d, e, f)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g) #

readList :: ReadS [(a, b, c, d, e, f, g)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h) #

readList :: ReadS [(a, b, c, d, e, f, g, h)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

class (Num a, Ord a) => Real a where #

Methods

toRational :: a -> Rational #

the rational equivalent of its real argument with full precision

Instances
Real Int

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

toRational :: Int -> Rational #

Real Integer

Since: base-2.0.1

Instance details

Defined in GHC.Real

Real Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Real

Real Word

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

toRational :: Word -> Rational #

Integral a => Real (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

toRational :: Ratio a -> Rational #

Real a => Real (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

toRational :: Const a b -> Rational #

class (RealFrac a, Floating a) => RealFloat a where #

Efficient, machine-independent access to the components of a floating-point number.

Methods

floatRadix :: a -> Integer #

a constant function, returning the radix of the representation (often 2)

floatDigits :: a -> Int #

a constant function, returning the number of digits of floatRadix in the significand

floatRange :: a -> (Int, Int) #

a constant function, returning the lowest and highest values the exponent may assume

decodeFloat :: a -> (Integer, Int) #

The function decodeFloat applied to a real floating-point number returns the significand expressed as an Integer and an appropriately scaled exponent (an Int). If decodeFloat x yields (m,n), then x is equal in value to m*b^^n, where b is the floating-point radix, and furthermore, either m and n are both zero or else b^(d-1) <= abs m < b^d, where d is the value of floatDigits x. In particular, decodeFloat 0 = (0,0). If the type contains a negative zero, also decodeFloat (-0.0) = (0,0). The result of decodeFloat x is unspecified if either of isNaN x or isInfinite x is True.

encodeFloat :: Integer -> Int -> a #

encodeFloat performs the inverse of decodeFloat in the sense that for finite x with the exception of -0.0, uncurry encodeFloat (decodeFloat x) = x. encodeFloat m n is one of the two closest representable floating-point numbers to m*b^^n (or ±Infinity if overflow occurs); usually the closer, but if m contains too many bits, the result may be rounded in the wrong direction.

exponent :: a -> Int #

exponent corresponds to the second component of decodeFloat. exponent 0 = 0 and for finite nonzero x, exponent x = snd (decodeFloat x) + floatDigits x. If x is a finite floating-point number, it is equal in value to significand x * b ^^ exponent x, where b is the floating-point radix. The behaviour is unspecified on infinite or NaN values.

significand :: a -> a #

The first component of decodeFloat, scaled to lie in the open interval (-1,1), either 0.0 or of absolute value >= 1/b, where b is the floating-point radix. The behaviour is unspecified on infinite or NaN values.

scaleFloat :: Int -> a -> a #

multiplies a floating-point number by an integer power of the radix

isNaN :: a -> Bool #

True if the argument is an IEEE "not-a-number" (NaN) value

isInfinite :: a -> Bool #

True if the argument is an IEEE infinity or negative infinity

isDenormalized :: a -> Bool #

True if the argument is too small to be represented in normalized format

isNegativeZero :: a -> Bool #

True if the argument is an IEEE negative zero

isIEEE :: a -> Bool #

True if the argument is an IEEE floating point number

atan2 :: a -> a -> a #

a version of arctangent taking two real floating-point arguments. For real floating x and y, atan2 y x computes the angle (from the positive x-axis) of the vector from the origin to the point (x,y). atan2 y x returns a value in the range [-pi, pi]. It follows the Common Lisp semantics for the origin when signed zeroes are supported. atan2 y 1, with y in a type that is RealFloat, should return the same value as atan y. A default definition of atan2 is provided, but implementors can provide a more accurate implementation.

Instances
RealFloat Double

Since: base-2.1

Instance details

Defined in GHC.Float

RealFloat Float

Since: base-2.1

Instance details

Defined in GHC.Float

RealFloat a => RealFloat (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer #

floatDigits :: Const a b -> Int #

floatRange :: Const a b -> (Int, Int) #

decodeFloat :: Const a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const a b #

exponent :: Const a b -> Int #

significand :: Const a b -> Const a b #

scaleFloat :: Int -> Const a b -> Const a b #

isNaN :: Const a b -> Bool #

isInfinite :: Const a b -> Bool #

isDenormalized :: Const a b -> Bool #

isNegativeZero :: Const a b -> Bool #

isIEEE :: Const a b -> Bool #

atan2 :: Const a b -> Const a b -> Const a b #

class (Real a, Fractional a) => RealFrac a where #

Extracting components of fractions.

Minimal complete definition

properFraction

Methods

properFraction :: Integral b => a -> (b, a) #

The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:

  • n is an integral number with the same sign as x; and
  • f is a fraction with the same type and sign as x, and with absolute value less than 1.

The default definitions of the ceiling, floor, truncate and round functions are in terms of properFraction.

truncate :: Integral b => a -> b #

truncate x returns the integer nearest x between zero and x

round :: Integral b => a -> b #

round x returns the nearest integer to x; the even integer if x is equidistant between two integers

ceiling :: Integral b => a -> b #

ceiling x returns the least integer not less than x

floor :: Integral b => a -> b #

floor x returns the greatest integer not greater than x

Instances
Integral a => RealFrac (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) #

truncate :: Integral b => Ratio a -> b #

round :: Integral b => Ratio a -> b #

ceiling :: Integral b => Ratio a -> b #

floor :: Integral b => Ratio a -> b #

RealFrac a => RealFrac (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

class Show a where #

Conversion of values to readable Strings.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Methods

showsPrec #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS 

Convert a value to a readable String.

showsPrec should satisfy the law

showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

show :: a -> String #

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

showList :: [a] -> ShowS #

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances
Show Bool

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Show Char

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Show Int

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Show Integer

Since: base-2.1

Instance details

Defined in GHC.Show

Show Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Show

Show Ordering

Since: base-2.1

Instance details

Defined in GHC.Show

Show Word

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Show RuntimeRep

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show VecCount

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show VecElem

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show CallStack

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show ()

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> () -> ShowS #

show :: () -> String #

showList :: [()] -> ShowS #

Show TyCon

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> TyCon -> ShowS #

show :: TyCon -> String #

showList :: [TyCon] -> ShowS #

Show Module

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show TrName

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show KindRep 
Instance details

Defined in GHC.Show

Show TypeLitSort

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Show Handle

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Handle.Types

Show HandleType

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Handle.Types

Methods

showsPrec :: Int -> HandleType -> ShowS #

show :: HandleType -> String #

showList :: [HandleType] -> ShowS #

Show BlockedIndefinitelyOnMVar

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show BlockedIndefinitelyOnSTM

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show Deadlock

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show AllocationLimitExceeded

Since: base-4.7.1.0

Instance details

Defined in GHC.IO.Exception

Show CompactionFailed

Since: base-4.10.0.0

Instance details

Defined in GHC.IO.Exception

Show AssertionFailed

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show SomeAsyncException

Since: base-4.7.0.0

Instance details

Defined in GHC.IO.Exception

Show AsyncException

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show ArrayException

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show FixIOException

Since: base-4.11.0.0

Instance details

Defined in GHC.IO.Exception

Show ExitCode 
Instance details

Defined in GHC.IO.Exception

Show IOErrorType

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show BufferMode

Since: base-4.2.0.0

Instance details

Defined in GHC.IO.Handle.Types

Show Newline

Since: base-4.3.0.0

Instance details

Defined in GHC.IO.Handle.Types

Show NewlineMode

Since: base-4.3.0.0

Instance details

Defined in GHC.IO.Handle.Types

Show MaskingState

Since: base-4.3.0.0

Instance details

Defined in GHC.IO

Show IOException

Since: base-4.1.0.0

Instance details

Defined in GHC.IO.Exception

Show All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Show Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Show Fixity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Show Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Show SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show SrcLoc

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

Show Dimension Source # 
Instance details

Defined in Data.Matrix.Class

Show a => Show [a]

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> [a] -> ShowS #

show :: [a] -> String #

showList :: [[a]] -> ShowS #

Show a => Show (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Show a => Show (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

showsPrec :: Int -> Ratio a -> ShowS #

show :: Ratio a -> String #

showList :: [Ratio a] -> ShowS #

Show (Ptr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

showsPrec :: Int -> Ptr a -> ShowS #

show :: Ptr a -> String #

showList :: [Ptr a] -> ShowS #

Show (FunPtr a)

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

showsPrec :: Int -> FunPtr a -> ShowS #

show :: FunPtr a -> String #

showList :: [FunPtr a] -> ShowS #

Show p => Show (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> Par1 p -> ShowS #

show :: Par1 p -> String #

showList :: [Par1 p] -> ShowS #

Show a => Show (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

showsPrec :: Int -> ZipList a -> ShowS #

show :: ZipList a -> String #

showList :: [ZipList a] -> ShowS #

Show a => Show (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Show a => Show (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Show a => Show (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Show a => Show (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Show a => Show (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Show a => Show (Down a)

Since: base-4.7.0.0

Instance details

Defined in Data.Ord

Methods

showsPrec :: Int -> Down a -> ShowS #

show :: Down a -> String #

showList :: [Down a] -> ShowS #

Show a => Show (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Show

Methods

showsPrec :: Int ->