- class Eq a => Morphism a where
- data FuncT
- data Mor a
- nrm :: Eq t => Mor t -> Mor t
- atomary :: Eq t => Mor t -> Bool
- arrow :: a -> Mor a -> Mor a -> Mor a
- element :: a -> Mor a -> Mor a
- coelement :: a -> Mor a -> Mor a
- object :: a -> Mor a
- objectId :: a -> Mor a
- tid :: Mor a
- vert :: Eq a => Mor a -> Mor a
- horz :: Eq a => Mor a -> Mor a
- collect :: (Num b, Ord a) => Mor a -> Map (Mor a) b
- data Rule a = DefEqual (Mor a) (Mor a)
- (\==) :: Mor a -> Mor a -> Rule a
- apply :: Eq a => Rule String -> Mor a -> Mor a

# Morphism

class Eq a => Morphism a whereSource

Class of morphisms.

Returns domain of the given morphism (actually its id).

Returns codomain of the given morphism (actually its id).

Checks whether morphism is id.

Composition of two morphisms (should be associative).

Tensor product of two morphisms.

Types of the functional modifier.

Morphism data type

# Basic functions on morphisms

nrm :: Eq t => Mor t -> Mor tSource

Normalizes the term representing morphism, e.g. turns `((a \* b) \* c)`

to `(a \* b \* c)`

arrow :: a -> Mor a -> Mor a -> Mor aSource

Creates `Arrow`

by morphism information (e.g. name), domain and codomain.

element :: a -> Mor a -> Mor aSource

Creates generalized element, i.e. an arrow from the identity object to the given object.

coelement :: a -> Mor a -> Mor aSource

Creates generalized coelement, i.e. an arrow from the the given object to the identity object.

# Tensor product functoriality

# Utilities

collect :: (Num b, Ord a) => Mor a -> Map (Mor a) bSource

Collects atomary subterms of the given arrow as keys of the map.

# Rules

Rule type