- dot :: (Num a, Num v, Fold v a) => v -> v -> a
- normSq :: (Num a, Num v, Fold v a) => v -> a
- norm :: (Num v, Floating a, Fold v a) => v -> a
- normalize :: (Floating a, Num v, Fold v a, Map a a v v) => v -> v
- cross :: Num a => Vec3 a -> Vec3 a -> Vec3 a
- homPoint :: (Snoc v a v', Num a) => v -> v'
- homVec :: (Snoc v a v', Num a) => v -> v'
- project :: (Reverse' () t1 v', Fractional t1, Vec a t t1, Reverse' () v (t :. t1)) => v -> v'
- multvm :: (Transpose m mt, Map v a mt v', Fold v a, Num a, Num v) => v -> m -> v'
- multmv :: (Map v a m v', Num v, Fold v a, Num a) => m -> v -> v'
- multmm :: (Map v v' m1 m3, Map v a b v', Transpose m2 b, Fold v a, Num v, Num a) => m1 -> m2 -> m3
- translate :: (Transpose m mt, Reverse' () mt (v' :. t), Reverse' (v' :. ()) t v'1, Transpose v'1 m, Num v', Num a, Snoc v a v') => v -> m -> m
- column :: (Transpose m mt, Access n v mt) => n -> m -> v
- row :: Access n a v => n -> v -> a
- class Transpose a b | a -> b, b -> a where
- transpose :: a -> b
- scale :: (GetDiagonal' N0 () m r, Num r, Vec n a r, Vec n r m, SetDiagonal' N0 r m) => r -> m -> m
- diagonal :: (Vec n a v, Vec n v m, SetDiagonal v m, Num m) => v -> m
- identity :: (Vec n a v, Vec n v m, Num v, Num m, SetDiagonal v m) => m
- det :: forall n a r m. (Vec n a r, Vec n r m, Det' m a) => m -> a
- cramer'sRule :: (Map a a1 b1 v, Transpose w b1, ZipWith a2 b vv v m w, ReplConsec' a2 () b vv, Vec n b vv, Vec n a2 b, Fractional a1, Det' m a1, Det' a a1) => m -> v -> v
- class GaussElim a m | m -> a where
- gaussElim :: m -> (m, a)
- invert :: forall n a r m r' m'. (Num r, Num m, Vec n a r, Vec n r m, Append r r r', ZipWith r r r' m m m', Drop n r' r, Map r' r m' m, SetDiagonal r m, GaussElim a m', BackSubstitute m') => m -> Maybe m
- invertAndDet :: forall n a r m r' m'. (Num a, Num r, Num m, Vec n a r, Vec n r m, Append r r r', ZipWith r r r' m m m', Drop n r' r, Map r' r m' m, SetDiagonal r m, GaussElim a m', BackSubstitute m') => m -> (m, a)
- solve :: forall n a v r m r' m'. (Num r, Num m, Vec n a r, Vec n r m, Snoc r a r', ZipWith r a r' m r m', Drop n r' (a :. ()), Map r' a m' r, GaussElim a m', BackSubstitute m') => m -> r -> Maybe r
Documentation
normalize :: (Floating a, Num v, Fold v a, Map a a v v) => v -> vSource
normalize v
is a unit vector in the direction of v
. v
is assumed
non-null.
project :: (Reverse' () t1 v', Fractional t1, Vec a t t1, Reverse' () v (t :. t1)) => v -> v'Source
project a vector from homogenous coordinates. Last vector element is assumed non-zero.
multvm :: (Transpose m mt, Map v a mt v', Fold v a, Num a, Num v) => v -> m -> v'Source
row vector * matrix
multmm :: (Map v v' m1 m3, Map v a b v', Transpose m2 b, Fold v a, Num v, Num a) => m1 -> m2 -> m3Source
matrix * matrix
translate :: (Transpose m mt, Reverse' () mt (v' :. t), Reverse' (v' :. ()) t v'1, Transpose v'1 m, Num v', Num a, Snoc v a v') => v -> m -> mSource
apply a translation to a projective transformation matrix
column :: (Transpose m mt, Access n v mt) => n -> m -> vSource
get the n
-th column as a vector. n
is a type-level natural.
scale :: (GetDiagonal' N0 () m r, Num r, Vec n a r, Vec n r m, SetDiagonal' N0 r m) => r -> m -> mSource
scale v m
multiplies the diagonal of matrix m
by the vector s
, component-wise. So
scale 5 m
multiplies the diagonal by 5, whereas scale 2:.1 m
only scales the x component.
diagonal :: (Vec n a v, Vec n v m, SetDiagonal v m, Num m) => v -> mSource
diagonal v
is a square matrix with the vector v as the diagonal, and 0
elsewhere.
identity :: (Vec n a v, Vec n v m, Num v, Num m, SetDiagonal v m) => mSource
identity matrix (square)
det :: forall n a r m. (Vec n a r, Vec n r m, Det' m a) => m -> aSource
Determinant by minor expansion, i.e. Laplace's formula. Unfolds into a
closed form expression. This should be the fastest way for 4x4 and smaller,
but snd . gaussElim
works too.
cramer'sRule :: (Map a a1 b1 v, Transpose w b1, ZipWith a2 b vv v m w, ReplConsec' a2 () b vv, Vec n b vv, Vec n a2 b, Fractional a1, Det' m a1, Det' a a1) => m -> v -> vSource
cramer'sRule m v
computes the solution to m`multmv`x=v
using the
eponymous method. For larger than 3x3 you will want to use solve
, which
uses gaussElim
. Cramer's rule, however, unfolds into a closed-form
expression, with no branches or allocations (other than the result). You may
need to increase the unfolding threshold to see this.
class GaussElim a m | m -> a whereSource
Gaussian elimination, adapted from Mirko Rahn: http://www.haskell.org/pipermail/glasgow-haskell-users/2007-May/012648.html
This is more of a proof of concept. Using a foreign C function will run slightly faster, and compile much faster. But where is the fun in that? Set your unfolding threshold as high as possible.
invert :: forall n a r m r' m'. (Num r, Num m, Vec n a r, Vec n r m, Append r r r', ZipWith r r r' m m m', Drop n r' r, Map r' r m' m, SetDiagonal r m, GaussElim a m', BackSubstitute m') => m -> Maybe mSource
invert m
returns Just
the inverse of m
or Nothing
if m
is singular.
invertAndDet :: forall n a r m r' m'. (Num a, Num r, Num m, Vec n a r, Vec n r m, Append r r r', ZipWith r r r' m m m', Drop n r' r, Map r' r m' m, SetDiagonal r m, GaussElim a m', BackSubstitute m') => m -> (m, a)Source
inverse and determinant. If det = 0, inverted matrix is garbage.