Portability | GHC only |
---|---|

Stability | experimental |

Maintainer | ekmett@gmail.com |

Forward mode automatic differentiation

- grad :: (Traversable f, Num a) => (forall s. Mode s => f (AD s a) -> AD s a) -> f a -> f a
- grad' :: (Traversable f, Num a) => (forall s. Mode s => f (AD s a) -> AD s a) -> f a -> (a, f a)
- gradWith :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> AD s a) -> f a -> f b
- gradWith' :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> AD s a) -> f a -> (a, f b)
- jacobian :: (Traversable f, Traversable g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> g (f a)
- jacobian' :: (Traversable f, Traversable g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> g (a, f a)
- jacobianWith :: (Traversable f, Traversable g, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> g (f b)
- jacobianWith' :: (Traversable f, Traversable g, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> g (a, f b)
- jacobianT :: (Traversable f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> f (g a)
- jacobianWithT :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> f (g b)
- diff :: Num a => (forall s. Mode s => AD s a -> AD s a) -> a -> a
- diff' :: Num a => (forall s. Mode s => AD s a -> AD s a) -> a -> (a, a)
- diffF :: (Functor f, Num a) => (forall s. Mode s => AD s a -> f (AD s a)) -> a -> f a
- diffF' :: (Functor f, Num a) => (forall s. Mode s => AD s a -> f (AD s a)) -> a -> f (a, a)
- du :: (Functor f, Num a) => (forall s. Mode s => f (AD s a) -> AD s a) -> f (a, a) -> a
- du' :: (Functor f, Num a) => (forall s. Mode s => f (AD s a) -> AD s a) -> f (a, a) -> (a, a)
- duF :: (Functor f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f (a, a) -> g a
- duF' :: (Functor f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f (a, a) -> g (a, a)
- diffM :: (Monad m, Num a) => (forall s. Mode s => AD s a -> m (AD s a)) -> a -> m a
- diffM' :: (Monad m, Num a) => (forall s. Mode s => AD s a -> m (AD s a)) -> a -> m (a, a)
- newtype AD f a = AD {
- runAD :: f a

- class Lifted t => Mode t where

# Gradient

grad' :: (Traversable f, Num a) => (forall s. Mode s => f (AD s a) -> AD s a) -> f a -> (a, f a)Source

gradWith :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> AD s a) -> f a -> f bSource

gradWith' :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> AD s a) -> f a -> (a, f b)Source

# Jacobian

jacobian :: (Traversable f, Traversable g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> g (f a)Source

jacobian' :: (Traversable f, Traversable g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> g (a, f a)Source

jacobianWith :: (Traversable f, Traversable g, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> g (f b)Source

jacobianWith' :: (Traversable f, Traversable g, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> g (a, f b)Source

# Transposed Jacobian

jacobianT :: (Traversable f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> f (g a)Source

A fast, simple transposed Jacobian computed with forward-mode AD.

jacobianWithT :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f a -> f (g b)Source

A fast, simple transposed Jacobian computed with forward-mode AD.

# Derivatives

diff' :: Num a => (forall s. Mode s => AD s a -> AD s a) -> a -> (a, a)Source

The `d'UU`

function calculates the result and first derivative of scalar-to-scalar function by F`orward`

`AD`

d' sin == sin &&& cos d' f = f &&& d f

# Directional Derivatives

duF :: (Functor f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f (a, a) -> g aSource

duF' :: (Functor f, Functor g, Num a) => (forall s. Mode s => f (AD s a) -> g (AD s a)) -> f (a, a) -> g (a, a)Source

# Monadic Combinators

diffM :: (Monad m, Num a) => (forall s. Mode s => AD s a -> m (AD s a)) -> a -> m aSource

The `dUM`

function calculates the first derivative of scalar-to-scalar monadic function by F`orward`

`AD`

diffM' :: (Monad m, Num a) => (forall s. Mode s => AD s a -> m (AD s a)) -> a -> m (a, a)Source

The `d'UM`

function calculates the result and first derivative of a scalar-to-scalar monadic function by F`orward`

`AD`

# Exposed Types

`AD`

serves as a common wrapper for different `Mode`

instances, exposing a traditional
numerical tower. Universal quantification is used to limit the actions in user code to
machinery that will return the same answers under all AD modes, allowing us to use modes
interchangeably as both the type level "brand" and dictionary, providing a common API.

Primal f => Primal (AD f) | |

Mode f => Mode (AD f) | |

Lifted f => Lifted (AD f) | |

Var (AD Reverse) | |

Iso (f a) (AD f a) | |

(Num a, Lifted f, Bounded a) => Bounded (AD f a) | |

(Num a, Lifted f, Enum a) => Enum (AD f a) | |

(Num a, Lifted f, Eq a) => Eq (AD f a) | |

(Lifted f, Floating a) => Floating (AD f a) | |

(Lifted f, Fractional a) => Fractional (AD f a) | |

(Lifted f, Num a) => Num (AD f a) | |

(Num a, Lifted f, Ord a) => Ord (AD f a) | |

(Lifted f, Real a) => Real (AD f a) | |

(Lifted f, RealFloat a) => RealFloat (AD f a) | |

(Lifted f, RealFrac a) => RealFrac (AD f a) | |

(Lifted f, Show a) => Show (AD f a) |

class Lifted t => Mode t whereSource

lift :: Num a => a -> t aSource

Embed a constant

(<+>) :: Num a => t a -> t a -> t aSource

Vector sum

(*^) :: Num a => a -> t a -> t aSource

Scalar-vector multiplication

(^*) :: Num a => t a -> a -> t aSource

Vector-scalar multiplication

(^/) :: Fractional a => t a -> a -> t aSource

Scalar division

'zero' = 'lift' 0