ad-0.44.4: Automatic Differentiation

PortabilityGHC only
Stabilityexperimental
Maintainerekmett@gmail.com

Numeric.AD.Types

Contents

Description

 

Synopsis

Documentation

newtype AD f a Source

AD serves as a common wrapper for different Mode instances, exposing a traditional numerical tower. Universal quantification is used to limit the actions in user code to machinery that will return the same answers under all AD modes, allowing us to use modes interchangeably as both the type level "brand" and dictionary, providing a common API.

Constructors

AD 

Fields

runAD :: f a
 

Instances

Typeable1 f => Typeable1 (AD f) 
Primal f => Primal (AD f) 
Mode f => Mode (AD f) 
Lifted f => Lifted (AD f) 
Var (AD Reverse) 
Iso (f a) (AD f a) 
(Num a, Lifted f, Bounded a) => Bounded (AD f a) 
(Num a, Lifted f, Enum a) => Enum (AD f a) 
(Num a, Lifted f, Eq a) => Eq (AD f a) 
(Lifted f, Floating a) => Floating (AD f a) 
(Lifted f, Fractional a) => Fractional (AD f a) 
(Typeable1 f, Typeable a, Data (f a), Data a) => Data (AD f a) 
(Lifted f, Num a) => Num (AD f a) 
(Num a, Lifted f, Ord a) => Ord (AD f a) 
(Lifted f, Real a) => Real (AD f a) 
(Lifted f, RealFloat a) => RealFloat (AD f a) 
(Lifted f, RealFrac a) => RealFrac (AD f a) 
(Lifted f, Show a) => Show (AD f a) 
Num a => Grad (AD Reverse a) [a] (a, [a]) a 
Num a => Grad (AD Sparse a) [a] (a, [a]) a 
Grads i o a => Grads (AD Sparse a -> i) (a -> o) a 
Num a => Grads (AD Sparse a) (Stream [] a) a 
Grad i o o' a => Grad (AD Reverse a -> i) (a -> o) (a -> o') a 
Grad i o o' a => Grad (AD Sparse a -> i) (a -> o) (a -> o') a 

Differentiable Functions

type UU a = forall s. Mode s => AD s a -> AD s aSource

A scalar-to-scalar automatically-differentiable function.

type UF f a = forall s. Mode s => AD s a -> f (AD s a)Source

A scalar-to-non-scalar automatically-differentiable function.

type FU f a = forall s. Mode s => f (AD s a) -> AD s aSource

A non-scalar-to-scalar automatically-differentiable function.

type FF f g a = forall s. Mode s => f (AD s a) -> g (AD s a)Source

A non-scalar-to-non-scalar automatically-differentiable function.

Tensors

data Tensors f a Source

Constructors

a :- (Tensors f (f a)) 

Instances

Functor f => Functor (Tensors f) 
Typeable1 f => Typeable1 (Tensors f) 
Foldable f => Foldable (Tensors f) 
Traversable f => Traversable (Tensors f) 
Functor f => Copointed (Tensors f)

While we can not be a Comonad without a fzip-like operation, you can use the comonad for Stream f a to manipulate a structure comonadically that you can turn into Tensors.

headT :: Tensors f a -> aSource

tailT :: Tensors f a -> Tensors f (f a)Source

tensors :: Functor f => Stream f a -> Tensors f aSource

f-Branching Streams

data Stream f a Source

Constructors

a :< (f (Stream f a)) 

Instances

Functor f => Functor (Stream f) 
Typeable1 f => Typeable1 (Stream f) 
Foldable f => Foldable (Stream f) 
Traversable f => Traversable (Stream f) 
Functor f => Comonad (Stream f) 
Functor f => Copointed (Stream f) 
(Typeable1 f, Data (f (Stream f a)), Data a) => Data (Stream f a) 
(Show a, Show (f (Stream f a))) => Show (Stream f a) 
Num a => Grads (AD Sparse a) (Stream [] a) a 

headS :: Stream f a -> aSource

tailS :: Stream f a -> f (Stream f a)Source

unfoldS :: Functor f => (a -> (b, f a)) -> a -> Stream f bSource

An Identity Mode.

newtype Id a Source

Constructors

Id a 

Instances

Monad Id 
Functor Id 
Typeable1 Id 
Applicative Id 
Foldable Id 
Traversable Id 
Primal Id 
Mode Id 
Lifted Id 
Iso a (Id a) 
Bounded a => Bounded (Id a) 
Enum a => Enum (Id a) 
Eq a => Eq (Id a) 
Floating a => Floating (Id a) 
Fractional a => Fractional (Id a) 
Data a => Data (Id a) 
Num a => Num (Id a) 
Ord a => Ord (Id a) 
Real a => Real (Id a) 
RealFloat a => RealFloat (Id a) 
RealFrac a => RealFrac (Id a) 
Show a => Show (Id a) 
Monoid a => Monoid (Id a) 

probe :: a -> AD Id aSource

unprobe :: AD Id a -> aSource

probed :: f a -> f (AD Id a)Source

unprobed :: f (AD Id a) -> f aSource

Apply functions that use lift

lowerUU :: UU a -> a -> aSource

lowerUF :: UF f a -> a -> f aSource

lowerFU :: FU f a -> f a -> aSource

lowerFF :: FF f g a -> f a -> g aSource