ad-4.2.0.1: Automatic Differentiation

PortabilityGHC only
Stabilityexperimental
Maintainerekmett@gmail.com
Safe HaskellNone

Numeric.AD.Mode.Sparse

Contents

Description

Higher order derivatives via a "dual number tower".

Synopsis

Documentation

data AD s a Source

Instances

Typeable2 AD 
Bounded a => Bounded (AD s a) 
Enum a => Enum (AD s a) 
Eq a => Eq (AD s a) 
Floating a => Floating (AD s a) 
Fractional a => Fractional (AD s a) 
Num a => Num (AD s a) 
Ord a => Ord (AD s a) 
Read a => Read (AD s a) 
Real a => Real (AD s a) 
RealFloat a => RealFloat (AD s a) 
RealFrac a => RealFrac (AD s a) 
Show a => Show (AD s a) 
Erf a => Erf (AD s a) 
InvErf a => InvErf (AD s a) 
Mode a => Mode (AD s a) 

data Sparse a Source

We only store partials in sorted order, so the map contained in a partial will only contain partials with equal or greater keys to that of the map in which it was found. This should be key for efficiently computing sparse hessians. there are only (n + k - 1) choose k distinct nth partial derivatives of a function with k inputs.

Instances

Typeable1 Sparse 
(Num a, Bounded a) => Bounded (Sparse a) 
(Num a, Enum a) => Enum (Sparse a) 
(Num a, Eq a) => Eq (Sparse a) 
Floating a => Floating (Sparse a) 
Fractional a => Fractional (Sparse a) 
Data a => Data (Sparse a) 
Num a => Num (Sparse a) 
(Num a, Ord a) => Ord (Sparse a) 
Real a => Real (Sparse a) 
RealFloat a => RealFloat (Sparse a) 
RealFrac a => RealFrac (Sparse a) 
Show a => Show (Sparse a) 
Erf a => Erf (Sparse a) 
InvErf a => InvErf (Sparse a) 
Num a => Mode (Sparse a) 
Num a => Jacobian (Sparse a) 
Num a => Grad (Sparse a) [a] (a, [a]) a 
Num a => Grads (Sparse a) (Cofree [] a) a 
Grads i o a => Grads (Sparse a -> i) (a -> o) a 
Grad i o o' a => Grad (Sparse a -> i) (a -> o) (a -> o') a 

auto :: Mode t => Scalar t -> tSource

Embed a constant

Sparse Gradients

grad :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> f aSource

grad' :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> (a, f a)Source

grads :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> Cofree f aSource

gradWith :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> f bSource

gradWith' :: (Traversable f, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> (a, f b)Source

Sparse Jacobians (synonyms)

jacobian :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (f a)Source

jacobian' :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (a, f a)Source

jacobianWith :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (f b)Source

jacobianWith' :: (Traversable f, Functor g, Num a) => (a -> a -> b) -> (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (a, f b)Source

jacobians :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (Cofree f a)Source

Sparse Hessians

hessian :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> f (f a)Source

hessian' :: (Traversable f, Num a) => (forall s. f (AD s (Sparse a)) -> AD s (Sparse a)) -> f a -> (a, f (a, f a))Source

hessianF :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (f (f a))Source

hessianF' :: (Traversable f, Functor g, Num a) => (forall s. f (AD s (Sparse a)) -> g (AD s (Sparse a))) -> f a -> g (a, f (a, f a))Source