algebra-4.3: Constructive abstract algebra

Numeric.Rig.Characteristic

Documentation

class Rig r => Characteristic r where Source #

Minimal complete definition

char

Methods

char :: proxy r -> Natural Source #

Instances

 Source # NB: we're using the boolean semiring, not the boolean ring Methodschar :: proxy Bool -> Natural Source # Source # Methodschar :: proxy Int -> Natural Source # Source # Methodschar :: proxy Int8 -> Natural Source # Source # Methodschar :: proxy Int16 -> Natural Source # Source # Methodschar :: proxy Int32 -> Natural Source # Source # Methodschar :: proxy Int64 -> Natural Source # Source # Methodschar :: proxy Integer -> Natural Source # Source # Methodschar :: proxy Word -> Natural Source # Source # Methodschar :: proxy Word8 -> Natural Source # Source # Methodschar :: proxy Word16 -> Natural Source # Source # Methodschar :: proxy Word32 -> Natural Source # Source # Methodschar :: proxy Word64 -> Natural Source # Source # Methodschar :: proxy () -> Natural Source # Source # Methodschar :: proxy Natural -> Natural Source # Source # Methodschar :: proxy (Fraction d) -> Natural Source # (Characteristic a, Characteristic b) => Characteristic (a, b) Source # Methodschar :: proxy (a, b) -> Natural Source # (Characteristic a, Characteristic b, Characteristic c) => Characteristic (a, b, c) Source # Methodschar :: proxy (a, b, c) -> Natural Source # (Characteristic a, Characteristic b, Characteristic c, Characteristic d) => Characteristic (a, b, c, d) Source # Methodschar :: proxy (a, b, c, d) -> Natural Source # (Characteristic a, Characteristic b, Characteristic c, Characteristic d, Characteristic e) => Characteristic (a, b, c, d, e) Source # Methodschar :: proxy (a, b, c, d, e) -> Natural Source #

charInt :: (Integral s, Bounded s) => proxy s -> Natural Source #

charWord :: (Integral s, Bounded s) => proxy s -> Natural Source #