base-compat-0.9.1: A compatibility layer for base

Safe HaskellSafe
LanguageHaskell98

Text.Read.Compat

Contents

Synopsis

The Read class

class Read a where #

Parsing of Strings, producing values.

Derived instances of Read make the following assumptions, which derived instances of Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Read in Haskell 2010 is equivalent to

instance (Read a) => Read (Tree a) where

        readsPrec d r =  readParen (d > app_prec)
                         (\r -> [(Leaf m,t) |
                                 ("Leaf",s) <- lex r,
                                 (m,t) <- readsPrec (app_prec+1) s]) r

                      ++ readParen (d > up_prec)
                         (\r -> [(u:^:v,w) |
                                 (u,s) <- readsPrec (up_prec+1) r,
                                 (":^:",t) <- lex s,
                                 (v,w) <- readsPrec (up_prec+1) t]) r

          where app_prec = 10
                up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

instance (Read a) => Read (Tree a) where

        readPrec = parens $ (prec app_prec $ do
                                 Ident "Leaf" <- lexP
                                 m <- step readPrec
                                 return (Leaf m))

                     +++ (prec up_prec $ do
                                 u <- step readPrec
                                 Symbol ":^:" <- lexP
                                 v <- step readPrec
                                 return (u :^: v))

          where app_prec = 10
                up_prec = 5

        readListPrec = readListPrecDefault

Minimal complete definition

readsPrec | readPrec

Instances

Read Bool 
Read Char 
Read Double 
Read Float 
Read Int 
Read Integer 
Read Ordering 
Read Word 
Read Word8 
Read Word16 
Read Word32 
Read Word64 
Read () 

Methods

readsPrec :: Int -> ReadS () #

readList :: ReadS [()] #

readPrec :: ReadPrec () #

readListPrec :: ReadPrec [()] #

Read Version 
Read ExitCode 
Read All 
Read Any 
Read Fixity 
Read Associativity 
Read SourceUnpackedness 
Read SourceStrictness 
Read DecidedStrictness 
Read SomeNat 
Read SomeSymbol 
Read Lexeme 
Read GeneralCategory 
Read a => Read [a] 

Methods

readsPrec :: Int -> ReadS [a] #

readList :: ReadS [[a]] #

readPrec :: ReadPrec [a] #

readListPrec :: ReadPrec [[a]] #

Read a => Read (Maybe a) 
(Integral a, Read a) => Read (Ratio a) 
Read (V1 p) 
Read (U1 p) 
Read p => Read (Par1 p) 
Read a => Read (Complex a) 
Read a => Read (ZipList a) 
Read a => Read (Dual a) 
Read a => Read (Sum a) 
Read a => Read (Product a) 
Read a => Read (First a) 
Read a => Read (Last a) 
(Read a, Read b) => Read (Either a b) 
Read (f p) => Read (Rec1 f p) 

Methods

readsPrec :: Int -> ReadS (Rec1 f p) #

readList :: ReadS [Rec1 f p] #

readPrec :: ReadPrec (Rec1 f p) #

readListPrec :: ReadPrec [Rec1 f p] #

(Read a, Read b) => Read (a, b) 

Methods

readsPrec :: Int -> ReadS (a, b) #

readList :: ReadS [(a, b)] #

readPrec :: ReadPrec (a, b) #

readListPrec :: ReadPrec [(a, b)] #

(Ix a, Read a, Read b) => Read (Array a b) 
Read c => Read (K1 i c p) 

Methods

readsPrec :: Int -> ReadS (K1 i c p) #

readList :: ReadS [K1 i c p] #

readPrec :: ReadPrec (K1 i c p) #

readListPrec :: ReadPrec [K1 i c p] #

(Read (f p), Read (g p)) => Read ((:+:) f g p) 

Methods

readsPrec :: Int -> ReadS ((f :+: g) p) #

readList :: ReadS [(f :+: g) p] #

readPrec :: ReadPrec ((f :+: g) p) #

readListPrec :: ReadPrec [(f :+: g) p] #

(Read (f p), Read (g p)) => Read ((:*:) f g p) 

Methods

readsPrec :: Int -> ReadS ((f :*: g) p) #

readList :: ReadS [(f :*: g) p] #

readPrec :: ReadPrec ((f :*: g) p) #

readListPrec :: ReadPrec [(f :*: g) p] #

Read (f (g p)) => Read ((:.:) f g p) 

Methods

readsPrec :: Int -> ReadS ((f :.: g) p) #

readList :: ReadS [(f :.: g) p] #

readPrec :: ReadPrec ((f :.: g) p) #

readListPrec :: ReadPrec [(f :.: g) p] #

(Read a, Read b, Read c) => Read (a, b, c) 

Methods

readsPrec :: Int -> ReadS (a, b, c) #

readList :: ReadS [(a, b, c)] #

readPrec :: ReadPrec (a, b, c) #

readListPrec :: ReadPrec [(a, b, c)] #

Read a => Read (Const k a b)

This instance would be equivalent to the derived instances of the Const newtype if the runConst field were removed

Methods

readsPrec :: Int -> ReadS (Const k a b) #

readList :: ReadS [Const k a b] #

readPrec :: ReadPrec (Const k a b) #

readListPrec :: ReadPrec [Const k a b] #

Read (f a) => Read (Alt k f a) 

Methods

readsPrec :: Int -> ReadS (Alt k f a) #

readList :: ReadS [Alt k f a] #

readPrec :: ReadPrec (Alt k f a) #

readListPrec :: ReadPrec [Alt k f a] #

(~) k a b => Read ((:~:) k a b) 

Methods

readsPrec :: Int -> ReadS ((k :~: a) b) #

readList :: ReadS [(k :~: a) b] #

readPrec :: ReadPrec ((k :~: a) b) #

readListPrec :: ReadPrec [(k :~: a) b] #

Read (f p) => Read (M1 i c f p) 

Methods

readsPrec :: Int -> ReadS (M1 i c f p) #

readList :: ReadS [M1 i c f p] #

readPrec :: ReadPrec (M1 i c f p) #

readListPrec :: ReadPrec [M1 i c f p] #

(Read a, Read b, Read c, Read d) => Read (a, b, c, d) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d) #

readList :: ReadS [(a, b, c, d)] #

readPrec :: ReadPrec (a, b, c, d) #

readListPrec :: ReadPrec [(a, b, c, d)] #

(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e) #

readList :: ReadS [(a, b, c, d, e)] #

readPrec :: ReadPrec (a, b, c, d, e) #

readListPrec :: ReadPrec [(a, b, c, d, e)] #

(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f) #

readList :: ReadS [(a, b, c, d, e, f)] #

readPrec :: ReadPrec (a, b, c, d, e, f) #

readListPrec :: ReadPrec [(a, b, c, d, e, f)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g) #

readList :: ReadS [(a, b, c, d, e, f, g)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h) #

readList :: ReadS [(a, b, c, d, e, f, g, h)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

type ReadS a = String -> [(a, String)] #

A parser for a type a, represented as a function that takes a String and returns a list of possible parses as (a,String) pairs.

Note that this kind of backtracking parser is very inefficient; reading a large structure may be quite slow (cf ReadP).

Haskell 2010 functions

reads :: Read a => ReadS a #

equivalent to readsPrec with a precedence of 0.

read :: Read a => String -> a #

The read function reads input from a string, which must be completely consumed by the input process.

readParen :: Bool -> ReadS a -> ReadS a #

readParen True p parses what p parses, but surrounded with parentheses.

readParen False p parses what p parses, but optionally surrounded with parentheses.

lex :: ReadS String #

The lex function reads a single lexeme from the input, discarding initial white space, and returning the characters that constitute the lexeme. If the input string contains only white space, lex returns a single successful `lexeme' consisting of the empty string. (Thus lex "" = [("","")].) If there is no legal lexeme at the beginning of the input string, lex fails (i.e. returns []).

This lexer is not completely faithful to the Haskell lexical syntax in the following respects:

  • Qualified names are not handled properly
  • Octal and hexadecimal numerics are not recognized as a single token
  • Comments are not treated properly

New parsing functions

data Lexeme :: * #

Constructors

Char Char

Character literal

String String

String literal, with escapes interpreted

Punc String

Punctuation or reserved symbol, e.g. (, ::

Ident String

Haskell identifier, e.g. foo, Baz

Symbol String

Haskell symbol, e.g. >>, :%

Number Number

Since: 4.6.0.0

EOF 

lexP :: ReadPrec Lexeme #

Parse a single lexeme

parens :: ReadPrec a -> ReadPrec a #

(parens p) parses "P", "(P0)", "((P0))", etc, where p parses "P" in the current precedence context and parses "P0" in precedence context zero

readListDefault :: Read a => ReadS [a] #

A possible replacement definition for the readList method (GHC only). This is only needed for GHC, and even then only for Read instances where readListPrec isn't defined as readListPrecDefault.

readListPrecDefault :: Read a => ReadPrec [a] #

A possible replacement definition for the readListPrec method, defined using readPrec (GHC only).

readEither :: Read a => String -> Either String a #

Parse a string using the Read instance. Succeeds if there is exactly one valid result. A Left value indicates a parse error.

Since: 4.6.0.0

readMaybe :: Read a => String -> Maybe a #

Parse a string using the Read instance. Succeeds if there is exactly one valid result.

Since: 4.6.0.0