cfg-0.0.2.2: Type directed application configuration parsing and accessors
Copyright© Jonathan Lorimer 2023
LicenseMIT
Maintainerjonathanlorimer@pm.me
Stabilitystable
Safe HaskellNone
LanguageHaskell2010

KeyTree

Description

This module contains types for our internal tree representation of types and configurations. It also contains some helper functions for working with these trees. This should make it easier to implement different source providers.

Since: 0.0.2.0

Synopsis

Types

type KeyTree key value = Free (Map key) value Source #

Type alias for our internal tree structure. If this was written directly as a sum type it would look like this:

Pure value | Free (Map key (KeyTree key value))

Since: 0.0.2.0

type KeyForest key value = Map key (Free (Map key) value) Source #

Type alias for a subtree

Since: 0.0.2.0

Helper Functions

foldKeyTree Source #

Arguments

:: (Eq k, Eq v) 
=> (v -> a)

Function to run on Pure values

-> (k -> Free (Map k) v -> a -> a)

Step function for fold

-> a

Initial accumulator

-> KeyTree k v

KeyTree to fold

-> a 

Right fold on a KeyTree. Uses foldrWithKey under the hood.

Since: 0.0.2.0

appendFold Source #

Arguments

:: (Eq k, Eq v) 
=> (a -> v -> v')

Function to run on existing Pure leaves a is the accumulator v is the value in Pure.

-> (a -> v')

Function from accumulator a to a value v. This happens when an empty subtree is found.

-> (k -> a -> Map k (Free (Map k) v) -> a)

Step function for fold with key k as an argument.

-> a

Accumulator.

-> KeyTree k v

KeyTree to append values to.

-> KeyTree k v' 

A fold that appends a value at the leaf of the KeyTree, identifies what to insert at the leaf by running a function on an accumulated value.

Since: 0.0.2.0

mayAppendFold Source #

Arguments

:: (Eq k, Eq v) 
=> (a -> v -> Maybe v')

Function to run on existing Pure leaves.

-> (a -> Maybe v')

Function to run when an empty node is found.

-> (k -> a -> Map k (Free (Map k) v) -> a)

Step function for fold with key k as an argument.

-> a

Accumulator.

-> KeyTree k v

Tree to be folded.

-> KeyTree k v' 

A fold that appends a value at the leaf of the KeyTree (like appendFold), but the function on the accumulator can return a Maybe. In the Nothing case we just append a Free full of an empty Map.

Since: 0.0.2.0

appendTraverse Source #

Arguments

:: (Applicative f, Eq k, Eq v) 
=> (a -> v -> f v')

Function to run on existing Pure leaves.

-> (a -> f v')

Function to run when an empty node is found.

-> (k -> a -> Map k (Free (Map k) v) -> a)

Step function for fold with key k as an argument.

-> a

Accumulator.

-> KeyTree k v

Tree to be folded.

-> f (KeyTree k v') 

Like appendFold but with functions that return a value wrapped in an Applicative effect f. The function is suffixed with "Traverse" because we use the sequenceA to wrap the entire tree in a single Applicative effect.

Since: 0.0.2.0

mayAppendTraverse :: (Applicative f, Eq k, Eq v) => (a -> v -> f v') -> (a -> f (Maybe v')) -> (k -> a -> Map k (Free (Map k) v) -> a) -> a -> KeyTree k v -> f (KeyTree k v') Source #

Similar to appendTraverse except the Applicative effect can optionally return a result. The function is manually implemented rather than using Traversable methods so that we don't have to require Traversable on f. This allows consumers to use effects like IO that don't have a Traversable instance.

Since: 0.0.2.0

Type Re-exports

data Map k a #

A Map from keys k to values a.

The Semigroup operation for Map is union, which prefers values from the left operand. If m1 maps a key k to a value a1, and m2 maps the same key to a different value a2, then their union m1 <> m2 maps k to a1.

Instances

Instances details
Bifoldable Map

Since: containers-0.6.3.1

Instance details

Defined in Data.Map.Internal

Methods

bifold :: Monoid m => Map m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Map a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Map a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Map a b -> c #

Eq2 Map

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Map a c -> Map b d -> Bool #

Ord2 Map

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Map a c -> Map b d -> Ordering #

Show2 Map

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Map a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Map a b] -> ShowS #

Hashable2 Map

Since: hashable-1.3.4.0

Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt2 :: (Int -> a -> Int) -> (Int -> b -> Int) -> Int -> Map a b -> Int #

(Lift k, Lift a) => Lift (Map k a :: Type)

Since: containers-0.6.6

Instance details

Defined in Data.Map.Internal

Methods

lift :: Quote m => Map k a -> m Exp #

liftTyped :: forall (m :: Type -> Type). Quote m => Map k a -> Code m (Map k a) #

Foldable (Map k)

Folds in order of increasing key.

Instance details

Defined in Data.Map.Internal

Methods

fold :: Monoid m => Map k m -> m #

foldMap :: Monoid m => (a -> m) -> Map k a -> m #

foldMap' :: Monoid m => (a -> m) -> Map k a -> m #

foldr :: (a -> b -> b) -> b -> Map k a -> b #

foldr' :: (a -> b -> b) -> b -> Map k a -> b #

foldl :: (b -> a -> b) -> b -> Map k a -> b #

foldl' :: (b -> a -> b) -> b -> Map k a -> b #

foldr1 :: (a -> a -> a) -> Map k a -> a #

foldl1 :: (a -> a -> a) -> Map k a -> a #

toList :: Map k a -> [a] #

null :: Map k a -> Bool #

length :: Map k a -> Int #

elem :: Eq a => a -> Map k a -> Bool #

maximum :: Ord a => Map k a -> a #

minimum :: Ord a => Map k a -> a #

sum :: Num a => Map k a -> a #

product :: Num a => Map k a -> a #

Eq k => Eq1 (Map k)

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

liftEq :: (a -> b -> Bool) -> Map k a -> Map k b -> Bool #

Ord k => Ord1 (Map k)

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

liftCompare :: (a -> b -> Ordering) -> Map k a -> Map k b -> Ordering #

(Ord k, Read k) => Read1 (Map k)

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Map k a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Map k a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Map k a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Map k a] #

Show k => Show1 (Map k)

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Map k a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Map k a] -> ShowS #

Traversable (Map k)

Traverses in order of increasing key.

Instance details

Defined in Data.Map.Internal

Methods

traverse :: Applicative f => (a -> f b) -> Map k a -> f (Map k b) #

sequenceA :: Applicative f => Map k (f a) -> f (Map k a) #

mapM :: Monad m => (a -> m b) -> Map k a -> m (Map k b) #

sequence :: Monad m => Map k (m a) -> m (Map k a) #

Functor (Map k) 
Instance details

Defined in Data.Map.Internal

Methods

fmap :: (a -> b) -> Map k a -> Map k b #

(<$) :: a -> Map k b -> Map k a #

Hashable k => Hashable1 (Map k)

Since: hashable-1.3.4.0

Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> Map k a -> Int #

(Data k, Data a, Ord k) => Data (Map k a) 
Instance details

Defined in Data.Map.Internal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) #

toConstr :: Map k a -> Constr #

dataTypeOf :: Map k a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) #

gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) #

Ord k => Monoid (Map k v) 
Instance details

Defined in Data.Map.Internal

Methods

mempty :: Map k v #

mappend :: Map k v -> Map k v -> Map k v #

mconcat :: [Map k v] -> Map k v #

Ord k => Semigroup (Map k v) 
Instance details

Defined in Data.Map.Internal

Methods

(<>) :: Map k v -> Map k v -> Map k v #

sconcat :: NonEmpty (Map k v) -> Map k v #

stimes :: Integral b => b -> Map k v -> Map k v #

Ord k => IsList (Map k v)

Since: containers-0.5.6.2

Instance details

Defined in Data.Map.Internal

Associated Types

type Item (Map k v) 
Instance details

Defined in Data.Map.Internal

type Item (Map k v) = (k, v)

Methods

fromList :: [Item (Map k v)] -> Map k v #

fromListN :: Int -> [Item (Map k v)] -> Map k v #

toList :: Map k v -> [Item (Map k v)] #

(Ord k, Read k, Read e) => Read (Map k e) 
Instance details

Defined in Data.Map.Internal

Methods

readsPrec :: Int -> ReadS (Map k e) #

readList :: ReadS [Map k e] #

readPrec :: ReadPrec (Map k e) #

readListPrec :: ReadPrec [Map k e] #

(Show k, Show a) => Show (Map k a) 
Instance details

Defined in Data.Map.Internal

Methods

showsPrec :: Int -> Map k a -> ShowS #

show :: Map k a -> String #

showList :: [Map k a] -> ShowS #

(NFData k, NFData a) => NFData (Map k a) 
Instance details

Defined in Data.Map.Internal

Methods

rnf :: Map k a -> () #

(Eq k, Eq a) => Eq (Map k a) 
Instance details

Defined in Data.Map.Internal

Methods

(==) :: Map k a -> Map k a -> Bool #

(/=) :: Map k a -> Map k a -> Bool #

(Ord k, Ord v) => Ord (Map k v) 
Instance details

Defined in Data.Map.Internal

Methods

compare :: Map k v -> Map k v -> Ordering #

(<) :: Map k v -> Map k v -> Bool #

(<=) :: Map k v -> Map k v -> Bool #

(>) :: Map k v -> Map k v -> Bool #

(>=) :: Map k v -> Map k v -> Bool #

max :: Map k v -> Map k v -> Map k v #

min :: Map k v -> Map k v -> Map k v #

(Hashable k, Hashable v) => Hashable (Map k v)

Since: hashable-1.3.4.0

Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Map k v -> Int #

hash :: Map k v -> Int #

type Item (Map k v) 
Instance details

Defined in Data.Map.Internal

type Item (Map k v) = (k, v)

data Free (f :: Type -> Type) a #

The Free Monad for a Functor f.

Formally

A Monad n is a free Monad for f if every monad homomorphism from n to another monad m is equivalent to a natural transformation from f to m.

Why Free?

Every "free" functor is left adjoint to some "forgetful" functor.

If we define a forgetful functor U from the category of monads to the category of functors that just forgets the Monad, leaving only the Functor. i.e.

U (M,return,join) = M

then Free is the left adjoint to U.

Free being left adjoint to U means that there is an isomorphism between

Free f -> m in the category of monads and f -> U m in the category of functors.

Morphisms in the category of monads are Monad homomorphisms (natural transformations that respect return and join).

Morphisms in the category of functors are Functor homomorphisms (natural transformations).

Given this isomorphism, every monad homomorphism from Free f to m is equivalent to a natural transformation from f to m

Showing that this isomorphism holds is left as an exercise.

In practice, you can just view a Free f a as many layers of f wrapped around values of type a, where (>>=) performs substitution and grafts new layers of f in for each of the free variables.

This can be very useful for modeling domain specific languages, trees, or other constructs.

This instance of MonadFree is fairly naive about the encoding. For more efficient free monad implementation see Control.Monad.Free.Church, in particular note the improve combinator. You may also want to take a look at the kan-extensions package (http://hackage.haskell.org/package/kan-extensions).

A number of common monads arise as free monads,

  • Given data Empty a, Free Empty is isomorphic to the Identity monad.
  • Free Maybe can be used to model a partiality monad where each layer represents running the computation for a while longer.

Constructors

Pure a 
Free (f (Free f a)) 

Instances

Instances details
MonadTrans Free

This is not a true monad transformer. It is only a monad transformer "up to retract".

Instance details

Defined in Control.Monad.Free

Methods

lift :: Monad m => m a -> Free m a #

Functor f => Generic1 (Free f :: Type -> Type) 
Instance details

Defined in Control.Monad.Free

Associated Types

type Rep1 (Free f :: Type -> Type) 
Instance details

Defined in Control.Monad.Free

type Rep1 (Free f :: Type -> Type) = D1 ('MetaData "Free" "Control.Monad.Free" "free-5.2-HYM0gD1Fq69B83fsZa2Ny8" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (f :.: Rec1 (Free f))))

Methods

from1 :: Free f a -> Rep1 (Free f) a #

to1 :: Rep1 (Free f) a -> Free f a #

Functor f => MonadFree f (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

wrap :: f (Free f a) -> Free f a #

MonadError e m => MonadError e (Free m) 
Instance details

Defined in Control.Monad.Free

Methods

throwError :: e -> Free m a #

catchError :: Free m a -> (e -> Free m a) -> Free m a #

MonadReader e m => MonadReader e (Free m) 
Instance details

Defined in Control.Monad.Free

Methods

ask :: Free m e #

local :: (e -> e) -> Free m a -> Free m a #

reader :: (e -> a) -> Free m a #

MonadState s m => MonadState s (Free m) 
Instance details

Defined in Control.Monad.Free

Methods

get :: Free m s #

put :: s -> Free m () #

state :: (s -> (a, s)) -> Free m a #

MonadWriter e m => MonadWriter e (Free m) 
Instance details

Defined in Control.Monad.Free

Methods

writer :: (a, e) -> Free m a #

tell :: e -> Free m () #

listen :: Free m a -> Free m (a, e) #

pass :: Free m (a, e -> e) -> Free m a #

Functor f => MonadFix (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

mfix :: (a -> Free f a) -> Free f a #

Foldable f => Foldable (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

fold :: Monoid m => Free f m -> m #

foldMap :: Monoid m => (a -> m) -> Free f a -> m #

foldMap' :: Monoid m => (a -> m) -> Free f a -> m #

foldr :: (a -> b -> b) -> b -> Free f a -> b #

foldr' :: (a -> b -> b) -> b -> Free f a -> b #

foldl :: (b -> a -> b) -> b -> Free f a -> b #

foldl' :: (b -> a -> b) -> b -> Free f a -> b #

foldr1 :: (a -> a -> a) -> Free f a -> a #

foldl1 :: (a -> a -> a) -> Free f a -> a #

toList :: Free f a -> [a] #

null :: Free f a -> Bool #

length :: Free f a -> Int #

elem :: Eq a => a -> Free f a -> Bool #

maximum :: Ord a => Free f a -> a #

minimum :: Ord a => Free f a -> a #

sum :: Num a => Free f a -> a #

product :: Num a => Free f a -> a #

Foldable1 f => Foldable1 (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

fold1 :: Semigroup m => Free f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Free f a -> m #

foldMap1' :: Semigroup m => (a -> m) -> Free f a -> m #

toNonEmpty :: Free f a -> NonEmpty a #

maximum :: Ord a => Free f a -> a #

minimum :: Ord a => Free f a -> a #

head :: Free f a -> a #

last :: Free f a -> a #

foldrMap1 :: (a -> b) -> (a -> b -> b) -> Free f a -> b #

foldlMap1' :: (a -> b) -> (b -> a -> b) -> Free f a -> b #

foldlMap1 :: (a -> b) -> (b -> a -> b) -> Free f a -> b #

foldrMap1' :: (a -> b) -> (a -> b -> b) -> Free f a -> b #

Eq1 f => Eq1 (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

liftEq :: (a -> b -> Bool) -> Free f a -> Free f b -> Bool #

Ord1 f => Ord1 (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

liftCompare :: (a -> b -> Ordering) -> Free f a -> Free f b -> Ordering #

Read1 f => Read1 (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Free f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Free f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Free f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Free f a] #

Show1 f => Show1 (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Free f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Free f a] -> ShowS #

Traversable f => Traversable (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Free f a -> f0 (Free f b) #

sequenceA :: Applicative f0 => Free f (f0 a) -> f0 (Free f a) #

mapM :: Monad m => (a -> m b) -> Free f a -> m (Free f b) #

sequence :: Monad m => Free f (m a) -> m (Free f a) #

Alternative v => Alternative (Free v)

This violates the Alternative laws, handle with care.

Instance details

Defined in Control.Monad.Free

Methods

empty :: Free v a #

(<|>) :: Free v a -> Free v a -> Free v a #

some :: Free v a -> Free v [a] #

many :: Free v a -> Free v [a] #

Functor f => Applicative (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

pure :: a -> Free f a #

(<*>) :: Free f (a -> b) -> Free f a -> Free f b #

liftA2 :: (a -> b -> c) -> Free f a -> Free f b -> Free f c #

(*>) :: Free f a -> Free f b -> Free f b #

(<*) :: Free f a -> Free f b -> Free f a #

Functor f => Functor (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

fmap :: (a -> b) -> Free f a -> Free f b #

(<$) :: a -> Free f b -> Free f a #

Functor f => Monad (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

(>>=) :: Free f a -> (a -> Free f b) -> Free f b #

(>>) :: Free f a -> Free f b -> Free f b #

return :: a -> Free f a #

MonadPlus v => MonadPlus (Free v)

This violates the MonadPlus laws, handle with care.

Instance details

Defined in Control.Monad.Free

Methods

mzero :: Free v a #

mplus :: Free v a -> Free v a -> Free v a #

MonadCont m => MonadCont (Free m) 
Instance details

Defined in Control.Monad.Free

Methods

callCC :: ((a -> Free m b) -> Free m a) -> Free m a #

Functor f => Apply (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

(<.>) :: Free f (a -> b) -> Free f a -> Free f b #

(.>) :: Free f a -> Free f b -> Free f b #

(<.) :: Free f a -> Free f b -> Free f a #

liftF2 :: (a -> b -> c) -> Free f a -> Free f b -> Free f c #

Functor f => Bind (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

(>>-) :: Free f a -> (a -> Free f b) -> Free f b #

join :: Free f (Free f a) -> Free f a #

Traversable1 f => Traversable1 (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Free f a -> f0 (Free f b) #

sequence1 :: Apply f0 => Free f (f0 b) -> f0 (Free f b) #

FoldableWithIndex i f => FoldableWithIndex [i] (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

ifoldMap :: Monoid m => ([i] -> a -> m) -> Free f a -> m #

ifoldMap' :: Monoid m => ([i] -> a -> m) -> Free f a -> m #

ifoldr :: ([i] -> a -> b -> b) -> b -> Free f a -> b #

ifoldl :: ([i] -> b -> a -> b) -> b -> Free f a -> b #

ifoldr' :: ([i] -> a -> b -> b) -> b -> Free f a -> b #

ifoldl' :: ([i] -> b -> a -> b) -> b -> Free f a -> b #

FunctorWithIndex i f => FunctorWithIndex [i] (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

imap :: ([i] -> a -> b) -> Free f a -> Free f b #

TraversableWithIndex i f => TraversableWithIndex [i] (Free f) 
Instance details

Defined in Control.Monad.Free

Methods

itraverse :: Applicative f0 => ([i] -> a -> f0 b) -> Free f a -> f0 (Free f b) #

(Typeable f, Data (f (Free f a)), Data a) => Data (Free f a) 
Instance details

Defined in Control.Monad.Free

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Free f a -> c (Free f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Free f a) #

toConstr :: Free f a -> Constr #

dataTypeOf :: Free f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Free f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Free f a)) #

gmapT :: (forall b. Data b => b -> b) -> Free f a -> Free f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Free f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Free f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) #

Generic (Free f a) 
Instance details

Defined in Control.Monad.Free

Associated Types

type Rep (Free f a) 
Instance details

Defined in Control.Monad.Free

type Rep (Free f a) = D1 ('MetaData "Free" "Control.Monad.Free" "free-5.2-HYM0gD1Fq69B83fsZa2Ny8" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f (Free f a)))))

Methods

from :: Free f a -> Rep (Free f a) x #

to :: Rep (Free f a) x -> Free f a #

(Read1 f, Read a) => Read (Free f a) 
Instance details

Defined in Control.Monad.Free

Methods

readsPrec :: Int -> ReadS (Free f a) #

readList :: ReadS [Free f a] #

readPrec :: ReadPrec (Free f a) #

readListPrec :: ReadPrec [Free f a] #

(Show1 f, Show a) => Show (Free f a) 
Instance details

Defined in Control.Monad.Free

Methods

showsPrec :: Int -> Free f a -> ShowS #

show :: Free f a -> String #

showList :: [Free f a] -> ShowS #

(Eq1 f, Eq a) => Eq (Free f a) 
Instance details

Defined in Control.Monad.Free

Methods

(==) :: Free f a -> Free f a -> Bool #

(/=) :: Free f a -> Free f a -> Bool #

(Ord1 f, Ord a) => Ord (Free f a) 
Instance details

Defined in Control.Monad.Free

Methods

compare :: Free f a -> Free f a -> Ordering #

(<) :: Free f a -> Free f a -> Bool #

(<=) :: Free f a -> Free f a -> Bool #

(>) :: Free f a -> Free f a -> Bool #

(>=) :: Free f a -> Free f a -> Bool #

max :: Free f a -> Free f a -> Free f a #

min :: Free f a -> Free f a -> Free f a #

type Rep1 (Free f :: Type -> Type) 
Instance details

Defined in Control.Monad.Free

type Rep1 (Free f :: Type -> Type) = D1 ('MetaData "Free" "Control.Monad.Free" "free-5.2-HYM0gD1Fq69B83fsZa2Ny8" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (f :.: Rec1 (Free f))))
type Rep (Free f a) 
Instance details

Defined in Control.Monad.Free

type Rep (Free f a) = D1 ('MetaData "Free" "Control.Monad.Free" "free-5.2-HYM0gD1Fq69B83fsZa2Ny8" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f (Free f a)))))