compdata-0.5.1: Compositional Data Types

Portability non-portable (GHC Extensions) experimental Tom Hvitved

Data.Comp.Param.Ops

Description

This module provides operators on difunctors.

Synopsis

• data (f :+: g) a b
• class sub :<: sup where
• data (f :*: g) a b = (f a b) :*: (g a b)
• ffst :: (f :*: g) a b -> f a b
• fsnd :: (f :*: g) a b -> g a b
• data (f :&: p) a b = (f a b) :&: p
• class DistAnn s p s' | s' -> s, s' -> p where
• class RemA s s' | s -> s' where
• remA :: s a b -> s' a b

Documentation

data (f :+: g) a b Source

Formal sum of signatures (difunctors).

Constructors

 Inl (f a b) Inr (g a b)

Instances

 f :<: g => f :<: (:+: h g) f :<: (:+: f g) (Difunctor f, Difunctor g) => Difunctor (:+: f g) (Ditraversable f, Ditraversable g) => Ditraversable (:+: f g) (EqD f, EqD g) => EqD (:+: f g) `EqD` is propagated through sums. (OrdD f, OrdD g) => OrdD (:+: f g) `OrdD` is propagated through sums. (ShowD f, ShowD g) => ShowD (:+: f g) (Desugar f g0, Desugar g g0) => Desugar (:+: f g) g0 DistAnn s p s' => DistAnn (:+: f s) p (:+: (:&: f p) s') RemA s s' => RemA (:+: (:&: f p) s) (:+: f s') (Eq (f a b), Eq (g a b)) => Eq (:+: f g a b) (Ord (f a b), Ord (g a b)) => Ord (:+: f g a b) (Show (f a b), Show (g a b)) => Show (:+: f g a b)

class sub :<: sup whereSource

Signature containment relation for automatic injections. The left-hand must be an atomic signature, where as the right-hand side must have a list-like structure. Examples include `f :<: f :+: g` and `g :<: f :+: (g :+: h)`, non-examples include `f :+: g :<: f :+: (g :+: h)` and `f :<: (f :+: g) :+: h`.

Methods

inj :: sub a b -> sup a bSource

proj :: sup a b -> Maybe (sub a b)Source

Instances

 f :<: f f :<: g => f :<: (:+: h g) f :<: (:+: f g)

data (f :*: g) a b Source

Formal product of signatures (difunctors).

Constructors

 (f a b) :*: (g a b)

ffst :: (f :*: g) a b -> f a bSource

fsnd :: (f :*: g) a b -> g a bSource

data (f :&: p) a b Source

This data type adds a constant product to a signature.

Constructors

 (f a b) :&: p

Instances

 DistAnn f p (:&: f p) Difunctor f => Difunctor (:&: f p) Ditraversable f => Ditraversable (:&: f p) (ShowD f, Show p) => ShowD (:&: f p) RemA (:&: f p) f DistAnn s p s' => DistAnn (:+: f s) p (:+: (:&: f p) s') RemA s s' => RemA (:+: (:&: f p) s) (:+: f s')

class DistAnn s p s' | s' -> s, s' -> p whereSource

This class defines how to distribute an annotation over a sum of signatures.

Methods

injectA :: p -> s a b -> s' a bSource

Inject an annotation over a signature.

projectA :: s' a b -> (s a b, p)Source

Project an annotation from a signature.

Instances

 DistAnn f p (:&: f p) DistAnn s p s' => DistAnn (:+: f s) p (:+: (:&: f p) s')

class RemA s s' | s -> s' whereSource

Methods

remA :: s a b -> s' a bSource

Remove annotations from a signature.

Instances

 RemA (:&: f p) f RemA s s' => RemA (:+: (:&: f p) s) (:+: f s')