The conjugateGradient package

[Tags: bsd3, library]

Sparse matrix linear-equation solver, using the conjugate gradient algorithm. Note that the technique only applies to matrices that are symmetric and positive-definite. See http://en.wikipedia.org/wiki/Conjugate_gradient_method for details.

The conjugate gradient method can handle very large sparse matrices, where direct methods (such as LU decomposition) are way too expensive to be useful in practice. Such large sparse matrices arise naturally in many engineering problems, such as in ASIC placement algorithms and when solving partial differential equations.


[Skip to ReadMe]

Properties

Versions1.0, 1.1, 1.2, 1.3, 1.4, 2.0, 2.1, 2.2
Change logNone available
Dependenciesbase (==4.*), containers, random [details]
LicenseBSD3
CopyrightLevent Erkok, 2013
AuthorLevent Erkok
MaintainerLevent Erkok (erkokl@gmail.com)
StabilityExperimental
CategoryMath
Home pagehttp://github.com/LeventErkok/conjugateGradient
Bug trackerhttp://github.com/LeventErkok/conjugateGradient/issues
Source repositoryhead: git clone git://github.com/LeventErkok/conjugateGradient.git
UploadedWed Apr 17 03:17:11 UTC 2013 by LeventErkok
DistributionsNixOS:2.2
Downloads1277 total (67 in last 30 days)
Votes
0 []
StatusDocs uploaded by user
Build status unknown [no reports yet]

Modules

[Index]

Downloads

Maintainers' corner

For package maintainers and hackage trustees

Readme for conjugateGradient-2.0

Conjugate Gradient Solver 
=========================

[![Build Status](https://secure.travis-ci.org/LeventErkok/conjugateGradient.png?branch=master)](http://travis-ci.org/LeventErkok/conjugateGradient)

Sparse matrix linear equation solver, using the Conjugate Gradient algorithm: http://en.wikipedia.org/wiki/Conjugate_gradient_method.

The method is applicable to matrices that are symmetric and positive definite.

On hackage: http://hackage.haskell.org/package/conjugateGradient