cryptonite-openssl-0.7: Crypto stuff using OpenSSL cryptographic library

LicenseBSD-style
Stabilityexperimental
PortabilityUnix
Safe HaskellNone
LanguageHaskell2010

Crypto.OpenSSL.ECC

Contents

Description

 

Synopsis

Documentation

data EcPoint Source #

An elliptic curve point

data EcGroup Source #

An ellitic curve group

data EcKey Source #

An elliptic curve key

Curve group

ecGroupFromCurveOID :: String -> Maybe EcGroup Source #

try to get a curve group from an ASN1 description string (OID)

e.g.

  • "1.3.132.0.35" == SEC_P521_R1
  • "1.2.840.10045.3.1.7" == SEC_P256_R1

ecGroupGFp Source #

Arguments

:: Integer

p

-> Integer

a

-> Integer

b

-> (Integer, Integer)

generator

-> Integer

order

-> Integer

cofactor

-> EcGroup 

Create a new GFp group with explicit (p,a,b,(x,y),order,h)

Generally, this interface should not be used, and user should really not stray away from already defined curves.

Use at your own risks.

ecGroupGF2m Source #

Arguments

:: Integer

p

-> Integer

a

-> Integer

b

-> (Integer, Integer)

generator

-> Integer

order

-> Integer

cofactor

-> EcGroup 

Create a new GF2m group with explicit (p,a,b,(x,y),order,h)

same warning as ecGroupGFp

ecGroupGetDegree :: EcGroup -> Int Source #

get the group degree (number of bytes)

ecGroupGetOrder :: EcGroup -> Integer Source #

get the order of the subgroup generated by the generator

ecGroupGetGenerator :: EcGroup -> EcPoint Source #

Get the group generator

ecGroupGetCurveGFp :: EcGroup -> (Integer, Integer, Integer) Source #

get curve's (prime,a,b)

ecGroupGetCurveGF2m :: EcGroup -> (Integer, Integer, Integer) Source #

get curve's (polynomial,a,b)

EcPoint arithmetic

ecPointAdd :: EcGroup -> EcPoint -> EcPoint -> EcPoint Source #

add 2 points together, r = p1 + p2

ecPointsSum :: EcGroup -> [EcPoint] -> EcPoint Source #

Add many points together

ecPointDbl :: EcGroup -> EcPoint -> EcPoint Source #

compute the doubling of the point p, r = p^2

ecPointMul Source #

Arguments

:: EcGroup 
-> EcPoint

q

-> Integer

m

-> EcPoint 

compute q * m

ecPointMulWithGenerator Source #

Arguments

:: EcGroup 
-> Integer

n

-> EcPoint

q

-> Integer

m

-> EcPoint 

compute generator * n + q * m

ecPointsMulAndSum :: EcGroup -> [(EcPoint, Integer)] -> EcPoint Source #

compute sum ((q,m) -> q * m) l

ecPointsMulOfPowerAndSum :: EcGroup -> [EcPoint] -> Integer -> EcPoint Source #

Compute the sum of the point to the nth power

f [p1,p2,..,pi] n = p1 * (n ^ 0) + p2 * (n ^ 1) + .. + pi * (n ^ i-1)

ecPointGeneratorMul :: EcGroup -> Integer -> EcPoint Source #

compute generator * n

ecPointInvert :: EcGroup -> EcPoint -> EcPoint Source #

compute the inverse on the curve on the point p, r = p^(-1)

ecPointIsAtInfinity :: EcGroup -> EcPoint -> Bool Source #

get if the point is at infinity

ecPointIsOnCurve :: EcGroup -> EcPoint -> Bool Source #

get if the point is on the curve

ecPointEq :: EcGroup -> EcPoint -> EcPoint -> Bool Source #

return if a point eq another point

EcPoint serialization

ecPointToOct :: ByteArray outBytes => EcGroup -> EcPoint -> PointConversionForm -> outBytes Source #

Create a binary represention of a point using the specific format

ecPointFromOct :: ByteArrayAccess inBytes => EcGroup -> inBytes -> Either String EcPoint Source #

Try to parse a binary representation to a point

ecPointFromAffineGFp :: EcGroup -> (Integer, Integer) -> EcPoint Source #

Convert a (x,y) to a point representation on a prime curve.

ecPointToAffineGFp :: EcGroup -> EcPoint -> (Integer, Integer) Source #

Convert a point of a prime curve to affine representation (x,y)

Key

ecKeyGenerateNew :: EcGroup -> IO EcKey Source #

generate a new key in a specific group

ecKeyFromPair :: EcGroup -> (Integer, EcPoint) -> EcKey Source #

create a key from a group and a private integer and public point keypair

ecKeyToPair :: EcKey -> (Integer, EcPoint) Source #

return the private integer and public point of a key