dph-base-0.6.1.1: Data Parallel Haskell common config and debugging functions.

Safe HaskellSafe-Infered

Data.Array.Parallel.Base.Text

Description

Utilities for defining Read/Show instances.

Synopsis

Documentation

showsApp :: Show a => Int -> String -> a -> ShowSSource

class Read a where

Parsing of Strings, producing values.

Minimal complete definition: readsPrec (or, for GHC only, readPrec)

Derived instances of Read make the following assumptions, which derived instances of Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

 infixr 5 :^:
 data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Read in Haskell 98 is equivalent to

 instance (Read a) => Read (Tree a) where

         readsPrec d r =  readParen (d > app_prec)
                          (\r -> [(Leaf m,t) |
                                  ("Leaf",s) <- lex r,
                                  (m,t) <- readsPrec (app_prec+1) s]) r

                       ++ readParen (d > up_prec)
                          (\r -> [(u:^:v,w) |
                                  (u,s) <- readsPrec (up_prec+1) r,
                                  (":^:",t) <- lex s,
                                  (v,w) <- readsPrec (up_prec+1) t]) r

           where app_prec = 10
                 up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

 instance (Read a) => Read (Tree a) where

         readPrec = parens $ (prec app_prec $ do
                                  Ident "Leaf" <- lexP
                                  m <- step readPrec
                                  return (Leaf m))

                      +++ (prec up_prec $ do
                                  u <- step readPrec
                                  Symbol ":^:" <- lexP
                                  v <- step readPrec
                                  return (u :^: v))

           where app_prec = 10
                 up_prec = 5

         readListPrec = readListPrecDefault

Methods

readsPrec

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> ReadS a 

attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

readList :: ReadS [a]

The method readList is provided to allow the programmer to give a specialised way of parsing lists of values. For example, this is used by the predefined Read instance of the Char type, where values of type String should be are expected to use double quotes, rather than square brackets.

readPrec :: ReadPrec a

Proposed replacement for readsPrec using new-style parsers (GHC only).

readListPrec :: ReadPrec [a]

Proposed replacement for readList using new-style parsers (GHC only). The default definition uses readList. Instances that define readPrec should also define readListPrec as readListPrecDefault.

Instances

Read Bool 
Read Char 
Read Double 
Read Float 
Read Int 
Read Integer 
Read Ordering 
Read () 
Read Lexeme 
Read Arity 
Read Fixity 
Read Associativity 
Read a => Read [a] 
(Integral a, Read a) => Read (Ratio a) 
Read a => Read (Maybe a) 
Read a => Read (Vector a) 
(Read a, Read b) => Read (Either a b) 
(Read a, Read b) => Read (a, b) 
(Ix a, Read a, Read b) => Read (Array a b) 
(Read a, Read b, Read c) => Read (a, b, c) 
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) 
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) 
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)