Safe Haskell | Safe-Infered |
---|

This is the API used by the vectoriser. The vectoriser wants a slightly different interface to the one used natively by the library. This module performs the impedance matching.

- data family PData a
- data family PDatas a
- type family PRepr a
- class PR (PRepr a) => PA a where
- toPRepr :: a -> PRepr a
- fromPRepr :: PRepr a -> a
- toArrPRepr :: PData a -> PData (PRepr a)
- fromArrPRepr :: PData (PRepr a) -> PData a
- toArrPReprs :: PDatas a -> PDatas (PRepr a)
- fromArrPReprs :: PDatas (PRepr a) -> PDatas a

- class PR a where
- validPR :: PData a -> Bool
- nfPR :: PData a -> ()
- similarPR :: a -> a -> Bool
- coversPR :: Bool -> PData a -> Int -> Bool
- pprpPR :: a -> Doc
- pprpDataPR :: PData a -> Doc
- emptyPR :: PData a
- replicatePR :: Int -> a -> PData a
- replicatesPR :: Segd -> PData a -> PData a
- appendPR :: PData a -> PData a -> PData a
- appendsPR :: Segd -> Segd -> PData a -> Segd -> PData a -> PData a
- lengthPR :: PData a -> Int
- indexPR :: PData a -> Int -> a
- indexsPR :: PDatas a -> Array (Int, Int) -> PData a
- indexvsPR :: PDatas a -> VSegd -> Array (Int, Int) -> PData a
- extractPR :: PData a -> Int -> Int -> PData a
- extractssPR :: PDatas a -> SSegd -> PData a
- extractvsPR :: PDatas a -> VSegd -> PData a
- packByTagPR :: PData a -> Array Tag -> Tag -> PData a
- combine2PR :: Sel2 -> PData a -> PData a -> PData a
- fromVectorPR :: Vector a -> PData a
- toVectorPR :: PData a -> Vector a
- emptydPR :: PDatas a
- singletondPR :: PData a -> PDatas a
- lengthdPR :: PDatas a -> Int
- indexdPR :: PDatas a -> Int -> PData a
- appenddPR :: PDatas a -> PDatas a -> PDatas a
- fromVectordPR :: Vector (PData a) -> PDatas a
- toVectordPR :: PDatas a -> Vector (PData a)

- emptyPD :: PA a => PData a
- replicatePD :: PA a => Int# -> a -> PData a
- packByTagPD :: PA a => PData a -> Int# -> Array Tag -> Int# -> PData a
- combine2PD :: PA a => Int# -> Sel2 -> PData a -> PData a -> PData a
- class (PA a, Elt a) => Scalar a where
- fromScalarPData :: PData a -> Array a
- toScalarPData :: Array a -> PData a
- fromScalarPDatas :: PDatas a -> Arrays a
- toScalarPDatas :: Arrays a -> PDatas a

- scalar_map :: (Scalar a, Scalar b) => (a -> b) -> PArray a -> PArray b
- scalar_zipWith :: (Scalar a, Scalar b, Scalar c) => (a -> b -> c) -> PArray a -> PArray b -> PArray c
- scalar_zipWith3 :: (Scalar a, Scalar b, Scalar c, Scalar d) => (a -> b -> c -> d) -> PArray a -> PArray b -> PArray c -> PArray d
- data Void
- void :: Void
- fromVoid :: a
- pvoid :: PData Void
- pvoids# :: Int# -> PDatas Void
- punit :: Int -> PData ()
- newtype Wrap a = Wrap {
- unWrap :: a

- data Sum2 a b
- data Sum3 a b c
- data a :-> b = forall env . PA env => Clo (env -> a -> b) (Int -> PData env -> PData a -> PData b) env
- closure :: forall a b e. PA e => (e -> a -> b) -> (Int# -> PData e -> PData a -> PData b) -> e -> a :-> b
- ($:) :: forall a b. (a :-> b) -> a -> b
- liftedClosure :: forall a b e. PA e => (e -> a -> b) -> (Int# -> PData e -> PData a -> PData b) -> PData e -> PData (a :-> b)
- liftedApply :: Int# -> PData (a :-> b) -> PData a -> PData b
- closure1 :: forall a b. (a -> b) -> (PArray a -> PArray b) -> a :-> b
- closure2 :: forall a b c. PA a => (a -> b -> c) -> (PArray a -> PArray b -> PArray c) -> a :-> (b :-> c)
- closure3 :: forall a b c d. (PA a, PA b) => (a -> b -> c -> d) -> (PArray a -> PArray b -> PArray c -> PArray d) -> a :-> (b :-> (c :-> d))
- type Sel2 = Sel2
- tagsSel2 :: Sel2 -> Array Tag
- pickSel2# :: Sel2 -> Int# -> Array Bool
- replicateSel2# :: Int# -> Int# -> Sel2
- elementsSel2_0# :: Sel2 -> Int#
- elementsSel2_1# :: Sel2 -> Int#
- type Sels2 = Vector Sel2
- lengthSels2# :: Sels2 -> Int#
- emptyPA_Int# :: PArray_Int#
- emptyPA_Double# :: PArray_Double#
- replicatePA_Int# :: Int# -> Int# -> PArray_Int#
- replicatePA_Double# :: Int# -> Double# -> PArray_Double#
- packByTagPA_Int# :: a
- packByTagPA_Double# :: a
- combine2PA_Int# :: Int# -> PArray_Int# -> PArray_Int# -> PArray_Int# -> PArray_Int# -> PArray_Int#
- combine2PA_Double# :: Int# -> PArray_Int# -> PArray_Int# -> PArray_Double# -> PArray_Double# -> PArray_Double#
- tup2 :: (PA a, PA b) => a :-> (b :-> (a, b))
- tup3 :: (PA a, PA b, PA c) => a :-> (b :-> (c :-> (a, b, c)))
- tup4 :: (PA a, PA b, PA c, PA d) => a :-> (b :-> (c :-> (d :-> (a, b, c, d))))
- tup5 :: (PA a, PA b, PA c, PA d) => a :-> (b :-> (c :-> (d :-> (e :-> (a, b, c, d, e)))))

# Documentation

Family of Representable types. These are the types that we know how to
represent generically. `PRepr`

takes an arbitrary type and produces the
generic type we use to represent it.

Instances for simple types are defined by the library. For algebraic types, it's up to the vectoriser/client module to create a suitable instance.

class PR (PRepr a) => PA a whereSource

A PA dictionary contains the functions that we use to convert a representable type to and from its generic representation.

The conversions methods should all be O(1).

fromPRepr :: PRepr a -> aSource

toArrPRepr :: PData a -> PData (PRepr a)Source

fromArrPRepr :: PData (PRepr a) -> PData aSource

toArrPReprs :: PDatas a -> PDatas (PRepr a)Source

fromArrPReprs :: PDatas (PRepr a) -> PDatas aSource

PA Bool | |

PA Double | |

PA Int | |

PA Integer | |

PA Ordering | |

PA Word8 | |

PA () | |

PA Void | |

PA a => PA (PArray a) | |

(PR a, PR b) => PA (Either a b) | |

(PA a, PA b) => PA (a, b) | |

(PA a, PA b) => PA (:-> a b) | |

(PA a, PA b, PA c) => PA (a, b, c) | |

(PA a, PA b, PA c, PA d) => PA (a, b, c, d) | |

(PA a, PA b, PA c, PA d, PA e) => PA (a, b, c, d, e) |

The PR (Parallel Representation) class holds primitive array operators that work on our generic representation of data.

There are instances for all atomic types such as `Int`

and `Double`

, tuples,
nested arrays `PData (PArray a)` and for the generic types we used to represent
user level algebraic data, `Sum2`

and `Wrap`

and `Void`

. All array data
is converted to this fixed set of types.

TODO: refactor to change PData Int to U.Array Int, there's not need to wrap an extra PData constructor around these arrays, and the type of bpermute is different than the others.

validPR :: PData a -> BoolSource

(debugging) Check that an array has a well formed representation.
This should only return `False`

where there is a bug in the library.

(debugging) Ensure an array is fully evaluted.

similarPR :: a -> a -> BoolSource

(debugging) Weak equality of contained elements.

Returns `True`

for functions of the same type. In the case of nested arrays,
returns `True`

if the array defines the same set of elements, but does not
care about the exact form of the segement descriptors.

coversPR :: Bool -> PData a -> Int -> BoolSource

(debugging) Check that an index is within an array.

Arrays containing `Void`

elements don't have a fixed length, and return
`Void`

for all indices. If the array does have a fixed length, and the
flag is true, then we allow the index to be equal to this length, as
well as less than it.

(debugging) Pretty print the physical representation of an element.

pprpDataPR :: PData a -> DocSource

(debugging) Pretty print the physical representation of some array data.

Produce an empty array with size zero.

replicatePR :: Int -> a -> PData aSource

O(n). Define an array of the given size, that maps all elements to the same value.

We require the replication count to be > 0 so that it's easier to
maintain the `validPR`

invariants for nested arrays.

replicatesPR :: Segd -> PData a -> PData aSource

O(sum lengths). Segmented replicate.

Given a Segment Descriptor (Segd), replicate each each element in the array according to the length of the corrsponding segment. The array data must define at least as many elements as there are segments in the descriptor.

appendPR :: PData a -> PData a -> PData aSource

Append two arrays.

appendsPR :: Segd -> Segd -> PData a -> Segd -> PData a -> PData aSource

Segmented append.

The first descriptor defines the segmentation of the result, and the others define the segmentation of each source array.

lengthPR :: PData a -> IntSource

O(1). Get the length of an array, if it has one.

Applying this function to an array of `Void`

will yield `error`

, as
these arrays have no fixed length. To check array bounds, use the
`coversPR`

method instead, as that is a total function.

indexPR :: PData a -> Int -> aSource

O(1). Retrieve a single element from a single array.

indexsPR :: PDatas a -> Array (Int, Int) -> PData aSource

O(1). Shared indexing. Retrieve several elements from several chunks of array data, given the chunkid and index in that chunk for each element.

indexvsPR :: PDatas a -> VSegd -> Array (Int, Int) -> PData aSource

O(1). Shared indexing

extractPR :: PData a -> Int -> Int -> PData aSource

O(slice len). Extract a slice of elements from an array, given the starting index and length of the slice.

extractssPR :: PDatas a -> SSegd -> PData aSource

O(sum seglens). Shared extract. Extract several slices from several source arrays.

The Scattered Segment Descriptor (`SSegd`

) describes where to get each
slice, and all slices are concatenated together into the result.

extractvsPR :: PDatas a -> VSegd -> PData aSource

O(sum seglens). Shared extract. Extract several slices from several source arrays. TODO: we're refactoring the library so functions use the VSeg form directly, instead of going via a SSegd.

packByTagPR :: PData a -> Array Tag -> Tag -> PData aSource

Select elements of an array that have their corresponding tag set to the given value.

The data array must define at least as many elements as the length of the tags array.

combine2PR :: Sel2 -> PData a -> PData a -> PData aSource

Combine two arrays based on a selector.

See the documentation for selectors in the dph-prim-seq library for how this works.

fromVectorPR :: Vector a -> PData aSource

Convert a boxed vector to an array.

toVectorPR :: PData a -> Vector aSource

Convert an array to a boxed vector.

O(1). Yield an empty collection of `PData`

.

singletondPR :: PData a -> PDatas aSource

O(1). Yield a singleton collection of `PData`

.

lengthdPR :: PDatas a -> IntSource

O(1). Yield how many `PData`

are in the collection.

indexdPR :: PDatas a -> Int -> PData aSource

O(1). Lookup a `PData`

from a collection.

appenddPR :: PDatas a -> PDatas a -> PDatas aSource

O(n). Append two collections of `PData`

.

fromVectordPR :: Vector (PData a) -> PDatas aSource

toVectordPR :: PDatas a -> Vector (PData a)Source

replicatePD :: PA a => Int# -> a -> PData aSource

class (PA a, Elt a) => Scalar a whereSource

Class of Scalar data that can be converted to and from single unboxed vectors.

fromScalarPData :: PData a -> Array aSource

toScalarPData :: Array a -> PData aSource

fromScalarPDatas :: PDatas a -> Arrays aSource

toScalarPDatas :: Arrays a -> PDatas aSource

scalar_zipWith :: (Scalar a, Scalar b, Scalar c) => (a -> b -> c) -> PArray a -> PArray b -> PArray cSource

scalar_zipWith3 :: (Scalar a, Scalar b, Scalar c, Scalar d) => (a -> b -> c -> d) -> PArray a -> PArray b -> PArray c -> PArray dSource

data Void

The `Void`

type is used when representing enumerations.

A type like Bool is represented as `Sum2 Void Void`

, meaning that we only
only care about the tag of the data constructor and not its argumnent.

fromVoid :: a

newtype Wrap a

When converting a data type to its generic representation, we use
`Wrap`

to help us convert only one layer at a time. For example:

data Foo a = Foo Int a instance PA a => PA (Foo a) where type PRepr (Foo a) = (Int, Wrap a) -- define how (Foo a) is represented

Here we've converted the `Foo`

data constructor to a pair, and Int
is its own representation type. We have PData/PR instances for pairs and
Ints, so we can work with arrays of these types. However, we can't just
use (Int, a) as the representation of (Foo a) because `a`

might
be user defined and we won't have PData/PR instances for it.

Instead, we wrap the second element with the Wrap constructor, which tells us that if we want to process this element we still need to convert it to the generic representation (and back). This last part is done by the PR instance of Wrap, who's methods are defined by calls to the *PD functions from Data.Array.Parallel.PArray.PRepr.

data Sum2 a b

Sum types used for the generic representation of algebraic data.

(PprPhysical a, PprPhysical b) => PprPhysical (Sum2 a b) | |

(PR a, PR b) => PR (Sum2 a b) |

Define the fixity of the closure type constructor.

The type of closures. This bundles up:

closure :: forall a b e. PA e => (e -> a -> b) -> (Int# -> PData e -> PData a -> PData b) -> e -> a :-> bSource

Construct a closure.

liftedClosure :: forall a b e. PA e => (e -> a -> b) -> (Int# -> PData e -> PData a -> PData b) -> PData e -> PData (a :-> b)Source

Construct a lifted closure.

closure2 :: forall a b c. PA a => (a -> b -> c) -> (PArray a -> PArray b -> PArray c) -> a :-> (b :-> c)Source

closure3 :: forall a b c d. (PA a, PA b) => (a -> b -> c -> d) -> (PArray a -> PArray b -> PArray c -> PArray d) -> a :-> (b :-> (c :-> d))Source

replicateSel2# :: Int# -> Int# -> Sel2Source

elementsSel2_0# :: Sel2 -> Int#Source

elementsSel2_1# :: Sel2 -> Int#Source

lengthSels2# :: Sels2 -> Int#Source

emptyPA_Int# :: PArray_Int#Source

emptyPA_Double# :: PArray_Double#Source

replicatePA_Int# :: Int# -> Int# -> PArray_Int#Source

replicatePA_Double# :: Int# -> Double# -> PArray_Double#Source

combine2PA_Int# :: Int# -> PArray_Int# -> PArray_Int# -> PArray_Int# -> PArray_Int# -> PArray_Int#Source

combine2PA_Double# :: Int# -> PArray_Int# -> PArray_Int# -> PArray_Double# -> PArray_Double# -> PArray_Double#Source