Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Composition of two FFunctor
s
Synopsis
- newtype FCompose ff gg h x = FCompose {
- getFCompose :: ff (gg h) x
- type (⊚) = FCompose
Documentation
newtype FCompose ff gg h x Source #
Composision of FFunctor
s.
Just like any functor, composition of two FFunctor
is FFunctor
again.
FCompose | |
|
Instances
(FFunctor ff, FFunctor gg) => FFunctor (FCompose ff gg) Source # | |
(FStrong ff, FStrong gg) => FStrong (FCompose ff gg) Source # | |
Defined in FStrong | |
(Adjunction ff uu, Adjunction gg vv) => Adjunction (FCompose ff gg) (FCompose vv uu) Source # | |
Defined in FFunctor.Adjunction unit :: forall (g :: Type -> Type). Functor g => g ~> FCompose vv uu (FCompose ff gg g) Source # counit :: forall (g :: Type -> Type). Functor g => FCompose ff gg (FCompose vv uu g) ~> g Source # leftAdjunct :: forall (g :: Type -> Type) (h :: Type -> Type). (Functor g, Functor h) => (FCompose ff gg g ~> h) -> g ~> FCompose vv uu h Source # rightAdjunct :: forall (g :: Type -> Type) (h :: Type -> Type). (Functor g, Functor h) => (g ~> FCompose vv uu h) -> FCompose ff gg g ~> h Source # | |
Foldable (ff (gg h)) => Foldable (FCompose ff gg h) Source # | |
Defined in FFunctor.FCompose fold :: Monoid m => FCompose ff gg h m -> m # foldMap :: Monoid m => (a -> m) -> FCompose ff gg h a -> m # foldMap' :: Monoid m => (a -> m) -> FCompose ff gg h a -> m # foldr :: (a -> b -> b) -> b -> FCompose ff gg h a -> b # foldr' :: (a -> b -> b) -> b -> FCompose ff gg h a -> b # foldl :: (b -> a -> b) -> b -> FCompose ff gg h a -> b # foldl' :: (b -> a -> b) -> b -> FCompose ff gg h a -> b # foldr1 :: (a -> a -> a) -> FCompose ff gg h a -> a # foldl1 :: (a -> a -> a) -> FCompose ff gg h a -> a # toList :: FCompose ff gg h a -> [a] # null :: FCompose ff gg h a -> Bool # length :: FCompose ff gg h a -> Int # elem :: Eq a => a -> FCompose ff gg h a -> Bool # maximum :: Ord a => FCompose ff gg h a -> a # minimum :: Ord a => FCompose ff gg h a -> a # | |
(FFunctor ff, FFunctor gg, Traversable (ff (gg h)), Functor h) => Traversable (FCompose ff gg h) Source # | |
Defined in FFunctor.FCompose traverse :: Applicative f => (a -> f b) -> FCompose ff gg h a -> f (FCompose ff gg h b) # sequenceA :: Applicative f => FCompose ff gg h (f a) -> f (FCompose ff gg h a) # mapM :: Monad m => (a -> m b) -> FCompose ff gg h a -> m (FCompose ff gg h b) # sequence :: Monad m => FCompose ff gg h (m a) -> m (FCompose ff gg h a) # | |
(FFunctor ff, FFunctor gg, Functor h) => Functor (FCompose ff gg h) Source # | |
Show (ff (gg h) x) => Show (FCompose ff gg h x) Source # | |
Eq (ff (gg h) x) => Eq (FCompose ff gg h x) Source # | |
Ord (ff (gg h) x) => Ord (FCompose ff gg h x) Source # | |
Defined in FFunctor.FCompose compare :: FCompose ff gg h x -> FCompose ff gg h x -> Ordering # (<) :: FCompose ff gg h x -> FCompose ff gg h x -> Bool # (<=) :: FCompose ff gg h x -> FCompose ff gg h x -> Bool # (>) :: FCompose ff gg h x -> FCompose ff gg h x -> Bool # (>=) :: FCompose ff gg h x -> FCompose ff gg h x -> Bool # max :: FCompose ff gg h x -> FCompose ff gg h x -> FCompose ff gg h x # min :: FCompose ff gg h x -> FCompose ff gg h x -> FCompose ff gg h x # |