{-# LANGUAGE DataKinds           #-}
{-# LANGUAGE FlexibleContexts    #-}
{-# LANGUAGE GADTs               #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections       #-}
{-# LANGUAGE TypeFamilies        #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
{-# LANGUAGE ViewPatterns        #-}
{-# LANGUAGE DisambiguateRecordFields #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns   #-}

{-
%
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}

module GHC.Tc.Gen.Head
       ( HsExprArg(..), EValArg(..), TcPass(..)
       , AppCtxt(..), appCtxtLoc, insideExpansion
       , splitHsApps, rebuildHsApps
       , addArgWrap, isHsValArg
       , countLeadingValArgs, isVisibleArg, pprHsExprArgTc
       , countVisAndInvisValArgs, countHsWrapperInvisArgs

       , tcInferAppHead, tcInferAppHead_maybe
       , tcInferId, tcCheckId
       , obviousSig
       , tyConOf, tyConOfET, lookupParents, fieldNotInType
       , notSelector, nonBidirectionalErr

       , addExprCtxt, addFunResCtxt ) where

import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcExpr, tcCheckMonoExprNC, tcCheckPolyExprNC )

import GHC.Tc.Gen.HsType
import GHC.Tc.Gen.Bind( chooseInferredQuantifiers )
import GHC.Tc.Gen.Sig( tcUserTypeSig, tcInstSig, lhsSigWcTypeContextSpan )
import GHC.Tc.TyCl.PatSyn( patSynBuilderOcc )
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Unify
import GHC.Types.Basic
import GHC.Types.Error
import GHC.Tc.Utils.Instantiate
import GHC.Tc.Instance.Family ( tcLookupDataFamInst )
import GHC.Core.FamInstEnv    ( FamInstEnvs )
import GHC.Core.UsageEnv      ( unitUE )
import GHC.Rename.Unbound     ( unknownNameSuggestions, WhatLooking(..) )
import GHC.Unit.Module        ( getModule )
import GHC.Tc.Errors.Types
import GHC.Tc.Solver          ( InferMode(..), simplifyInfer )
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.TcMType
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcType as TcType
import GHC.Hs
import GHC.Hs.Syn.Type
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Core.PatSyn( PatSyn )
import GHC.Core.ConLike( ConLike(..) )
import GHC.Core.DataCon
import GHC.Types.Name
import GHC.Types.Name.Reader
import GHC.Core.TyCon
import GHC.Core.TyCo.Rep
import GHC.Core.Type
import GHC.Tc.Types.Evidence
import GHC.Builtin.Types( multiplicityTy )
import GHC.Builtin.Names
import GHC.Builtin.Names.TH( liftStringName, liftName )
import GHC.Driver.Env
import GHC.Driver.Session
import GHC.Types.SrcLoc
import GHC.Utils.Misc
import GHC.Data.Maybe
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import Control.Monad

import Data.Function

import GHC.Prelude


{- *********************************************************************
*                                                                      *
              HsExprArg: auxiliary data type
*                                                                      *
********************************************************************* -}

{- Note [HsExprArg]
~~~~~~~~~~~~~~~~~~~
The data type HsExprArg :: TcPass -> Type
is a very local type, used only within this module and GHC.Tc.Gen.App

* It's really a zipper for an application chain
  See Note [Application chains and heads] in GHC.Tc.Gen.App for
  what an "application chain" is.

* It's a GHC-specific type, so using TTG only where necessary

* It is indexed by TcPass, meaning
  - HsExprArg TcpRn:
      The result of splitHsApps, which decomposes a HsExpr GhcRn

  - HsExprArg TcpInst:
      The result of tcInstFun, which instantiates the function type
      Adds EWrap nodes, the argument type in EValArg,
      and the kind-checked type in ETypeArg

  - HsExprArg TcpTc:
      The result of tcArg, which typechecks the value args
      In EValArg we now have a (LHsExpr GhcTc)

* rebuildPrefixApps is dual to splitHsApps, and zips an application
  back into a HsExpr

Note [EValArg]
~~~~~~~~~~~~~~
The data type EValArg is the payload of the EValArg constructor of
HsExprArg; i.e. a value argument of the application.  EValArg has two
forms:

* ValArg: payload is just the expression itself. Simple.

* ValArgQL: captures the results of applying quickLookArg to the
  argument in a ValArg.  When we later want to typecheck that argument
  we can just carry on from where quick-look left off.  The fields of
  ValArgQL exactly capture what is needed to complete the job.

Invariants:

1. With QL switched off, all arguments are ValArg; no ValArgQL

2. With QL switched on, tcInstFun converts some ValArgs to ValArgQL,
   under the conditions when quick-look should happen (eg the argument
   type is guarded) -- see quickLookArg

Note [splitHsApps]
~~~~~~~~~~~~~~~~~~
The key function
  splitHsApps :: HsExpr GhcRn -> (HsExpr GhcRn, HsExpr GhcRn, [HsExprArg 'TcpRn])
takes apart either an HsApp, or an infix OpApp, returning

* The "head" of the application, an expression that is often a variable;
  this is used for typechecking

* The "user head" or "error head" of the application, to be reported to the
  user in case of an error.  Example:
         (`op` e)
  expands (via HsExpanded) to
         (rightSection op e)
  but we don't want to see 'rightSection' in error messages. So we keep the
  innermost un-expanded head as the "error head".

* A list of HsExprArg, the arguments
-}

data TcPass = TcpRn     -- Arguments decomposed
            | TcpInst   -- Function instantiated
            | TcpTc     -- Typechecked

data HsExprArg (p :: TcPass)
  = -- See Note [HsExprArg]
    EValArg  { forall (p :: TcPass). HsExprArg p -> AppCtxt
eva_ctxt   :: AppCtxt
             , forall (p :: TcPass). HsExprArg p -> EValArg p
eva_arg    :: EValArg p
             , forall (p :: TcPass). HsExprArg p -> XEVAType p
eva_arg_ty :: !(XEVAType p) }

  | ETypeArg { eva_ctxt  :: AppCtxt
             , forall (p :: TcPass). HsExprArg p -> LHsWcType (GhcPass 'Renamed)
eva_hs_ty :: LHsWcType GhcRn  -- The type arg
             , forall (p :: TcPass). HsExprArg p -> XETAType p
eva_ty    :: !(XETAType p) }  -- Kind-checked type arg

  | EPrag    AppCtxt
             (HsPragE (GhcPass (XPass p)))

  | EWrap    EWrap

data EWrap = EPar    AppCtxt
           | EExpand (HsExpr GhcRn)
           | EHsWrap HsWrapper

data EValArg (p :: TcPass) where  -- See Note [EValArg]
  ValArg   :: LHsExpr (GhcPass (XPass p))
           -> EValArg p

  ValArgQL :: { EValArg 'TcpInst -> LHsExpr (GhcPass 'Renamed)
va_expr :: LHsExpr GhcRn        -- Original application
                                                -- For location and error msgs
              , EValArg 'TcpInst -> (HsExpr GhcTc, AppCtxt)
va_fun  :: (HsExpr GhcTc, AppCtxt) -- Function of the application,
                                                   -- typechecked, plus its context
              , EValArg 'TcpInst -> [HsExprArg 'TcpInst]
va_args :: [HsExprArg 'TcpInst] -- Args, instantiated
              , EValArg 'TcpInst -> TcSigmaType
va_ty   :: TcRhoType }          -- Result type
           -> EValArg 'TcpInst  -- Only exists in TcpInst phase

data AppCtxt
  = VAExpansion
       (HsExpr GhcRn)    -- Inside an expansion of this expression
       SrcSpan           -- The SrcSpan of the expression
                         --    noSrcSpan if outermost

  | VACall
       (HsExpr GhcRn) Int  -- In the third argument of function f
       SrcSpan             -- The SrcSpan of the application (f e1 e2 e3)

appCtxtLoc :: AppCtxt -> SrcSpan
appCtxtLoc :: AppCtxt -> SrcSpan
appCtxtLoc (VAExpansion HsExpr (GhcPass 'Renamed)
_ SrcSpan
l) = SrcSpan
l
appCtxtLoc (VACall HsExpr (GhcPass 'Renamed)
_ ThLevel
_ SrcSpan
l)    = SrcSpan
l

insideExpansion :: AppCtxt -> Bool
insideExpansion :: AppCtxt -> Bool
insideExpansion (VAExpansion {}) = Bool
True
insideExpansion (VACall {})      = Bool
False

instance Outputable AppCtxt where
  ppr :: AppCtxt -> SDoc
ppr (VAExpansion HsExpr (GhcPass 'Renamed)
e SrcSpan
_) = String -> SDoc
text String
"VAExpansion" SDoc -> SDoc -> SDoc
<+> HsExpr (GhcPass 'Renamed) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr (GhcPass 'Renamed)
e
  ppr (VACall HsExpr (GhcPass 'Renamed)
f ThLevel
n SrcSpan
_)    = String -> SDoc
text String
"VACall" SDoc -> SDoc -> SDoc
<+> ThLevel -> SDoc
int ThLevel
n SDoc -> SDoc -> SDoc
<+> HsExpr (GhcPass 'Renamed) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr (GhcPass 'Renamed)
f

type family XPass p where
  XPass 'TcpRn   = 'Renamed
  XPass 'TcpInst = 'Renamed
  XPass 'TcpTc   = 'Typechecked

type family XETAType p where  -- Type arguments
  XETAType 'TcpRn = NoExtField
  XETAType _      = Type

type family XEVAType p where  -- Value arguments
  XEVAType 'TcpRn = NoExtField
  XEVAType _      = Scaled Type

mkEValArg :: AppCtxt -> LHsExpr GhcRn -> HsExprArg 'TcpRn
mkEValArg :: AppCtxt -> LHsExpr (GhcPass 'Renamed) -> HsExprArg 'TcpRn
mkEValArg AppCtxt
ctxt LHsExpr (GhcPass 'Renamed)
e = EValArg { eva_arg :: EValArg 'TcpRn
eva_arg = LHsExpr (GhcPass (XPass 'TcpRn)) -> EValArg 'TcpRn
forall (p :: TcPass). LHsExpr (GhcPass (XPass p)) -> EValArg p
ValArg LHsExpr (GhcPass 'Renamed)
LHsExpr (GhcPass (XPass 'TcpRn))
e, eva_ctxt :: AppCtxt
eva_ctxt = AppCtxt
ctxt
                           , eva_arg_ty :: XEVAType 'TcpRn
eva_arg_ty = NoExtField
XEVAType 'TcpRn
noExtField }

mkETypeArg :: AppCtxt -> LHsWcType GhcRn -> HsExprArg 'TcpRn
mkETypeArg :: AppCtxt -> LHsWcType (GhcPass 'Renamed) -> HsExprArg 'TcpRn
mkETypeArg AppCtxt
ctxt LHsWcType (GhcPass 'Renamed)
hs_ty = ETypeArg { eva_ctxt :: AppCtxt
eva_ctxt = AppCtxt
ctxt, eva_hs_ty :: LHsWcType (GhcPass 'Renamed)
eva_hs_ty = LHsWcType (GhcPass 'Renamed)
hs_ty
                                 , eva_ty :: XETAType 'TcpRn
eva_ty = NoExtField
XETAType 'TcpRn
noExtField }

addArgWrap :: HsWrapper -> [HsExprArg 'TcpInst] -> [HsExprArg 'TcpInst]
addArgWrap :: HsWrapper -> [HsExprArg 'TcpInst] -> [HsExprArg 'TcpInst]
addArgWrap HsWrapper
wrap [HsExprArg 'TcpInst]
args
 | HsWrapper -> Bool
isIdHsWrapper HsWrapper
wrap = [HsExprArg 'TcpInst]
args
 | Bool
otherwise          = EWrap -> HsExprArg 'TcpInst
forall (p :: TcPass). EWrap -> HsExprArg p
EWrap (HsWrapper -> EWrap
EHsWrap HsWrapper
wrap) HsExprArg 'TcpInst -> [HsExprArg 'TcpInst] -> [HsExprArg 'TcpInst]
forall a. a -> [a] -> [a]
: [HsExprArg 'TcpInst]
args

splitHsApps :: HsExpr GhcRn
            -> ( (HsExpr GhcRn, AppCtxt)  -- Head
               , [HsExprArg 'TcpRn])      -- Args
-- See Note [splitHsApps]
splitHsApps :: HsExpr (GhcPass 'Renamed)
-> ((HsExpr (GhcPass 'Renamed), AppCtxt), [HsExprArg 'TcpRn])
splitHsApps HsExpr (GhcPass 'Renamed)
e = HsExpr (GhcPass 'Renamed)
-> AppCtxt
-> [HsExprArg 'TcpRn]
-> ((HsExpr (GhcPass 'Renamed), AppCtxt), [HsExprArg 'TcpRn])
go HsExpr (GhcPass 'Renamed)
e (ThLevel -> HsExpr (GhcPass 'Renamed) -> AppCtxt
top_ctxt ThLevel
0 HsExpr (GhcPass 'Renamed)
e) []
  where
    top_ctxt :: ThLevel -> HsExpr (GhcPass 'Renamed) -> AppCtxt
top_ctxt ThLevel
n (HsPar XPar (GhcPass 'Renamed)
_ LHsToken "(" (GhcPass 'Renamed)
_ LHsExpr (GhcPass 'Renamed)
fun LHsToken ")" (GhcPass 'Renamed)
_)           = ThLevel
-> GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed)) -> AppCtxt
top_lctxt ThLevel
n LHsExpr (GhcPass 'Renamed)
GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed))
fun
    top_ctxt ThLevel
n (HsPragE XPragE (GhcPass 'Renamed)
_ HsPragE (GhcPass 'Renamed)
_ LHsExpr (GhcPass 'Renamed)
fun)           = ThLevel
-> GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed)) -> AppCtxt
top_lctxt ThLevel
n LHsExpr (GhcPass 'Renamed)
GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed))
fun
    top_ctxt ThLevel
n (HsAppType XAppTypeE (GhcPass 'Renamed)
_ LHsExpr (GhcPass 'Renamed)
fun LHsWcType (NoGhcTc (GhcPass 'Renamed))
_)         = ThLevel
-> GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed)) -> AppCtxt
top_lctxt (ThLevel
nThLevel -> ThLevel -> ThLevel
forall a. Num a => a -> a -> a
+ThLevel
1) LHsExpr (GhcPass 'Renamed)
GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed))
fun
    top_ctxt ThLevel
n (HsApp XApp (GhcPass 'Renamed)
_ LHsExpr (GhcPass 'Renamed)
fun LHsExpr (GhcPass 'Renamed)
_)             = ThLevel
-> GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed)) -> AppCtxt
top_lctxt (ThLevel
nThLevel -> ThLevel -> ThLevel
forall a. Num a => a -> a -> a
+ThLevel
1) LHsExpr (GhcPass 'Renamed)
GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed))
fun
    top_ctxt ThLevel
n (XExpr (HsExpanded HsExpr (GhcPass 'Renamed)
orig HsExpr (GhcPass 'Renamed)
_)) = HsExpr (GhcPass 'Renamed) -> ThLevel -> SrcSpan -> AppCtxt
VACall HsExpr (GhcPass 'Renamed)
orig      ThLevel
n SrcSpan
noSrcSpan
    top_ctxt ThLevel
n HsExpr (GhcPass 'Renamed)
other_fun                   = HsExpr (GhcPass 'Renamed) -> ThLevel -> SrcSpan -> AppCtxt
VACall HsExpr (GhcPass 'Renamed)
other_fun ThLevel
n SrcSpan
noSrcSpan

    top_lctxt :: ThLevel
-> GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed)) -> AppCtxt
top_lctxt ThLevel
n (L SrcSpanAnnA
_ HsExpr (GhcPass 'Renamed)
fun) = ThLevel -> HsExpr (GhcPass 'Renamed) -> AppCtxt
top_ctxt ThLevel
n HsExpr (GhcPass 'Renamed)
fun

    go :: HsExpr GhcRn -> AppCtxt -> [HsExprArg 'TcpRn]
       -> ((HsExpr GhcRn, AppCtxt), [HsExprArg 'TcpRn])
    go :: HsExpr (GhcPass 'Renamed)
-> AppCtxt
-> [HsExprArg 'TcpRn]
-> ((HsExpr (GhcPass 'Renamed), AppCtxt), [HsExprArg 'TcpRn])
go (HsPar XPar (GhcPass 'Renamed)
_ LHsToken "(" (GhcPass 'Renamed)
_ (L SrcSpanAnnA
l HsExpr (GhcPass 'Renamed)
fun) LHsToken ")" (GhcPass 'Renamed)
_)    AppCtxt
ctxt [HsExprArg 'TcpRn]
args = HsExpr (GhcPass 'Renamed)
-> AppCtxt
-> [HsExprArg 'TcpRn]
-> ((HsExpr (GhcPass 'Renamed), AppCtxt), [HsExprArg 'TcpRn])
go HsExpr (GhcPass 'Renamed)
fun (SrcSpanAnnA -> AppCtxt -> AppCtxt
set SrcSpanAnnA
l AppCtxt
ctxt) (EWrap -> HsExprArg 'TcpRn
forall (p :: TcPass). EWrap -> HsExprArg p
EWrap (AppCtxt -> EWrap
EPar AppCtxt
ctxt)   HsExprArg 'TcpRn -> [HsExprArg 'TcpRn] -> [HsExprArg 'TcpRn]
forall a. a -> [a] -> [a]
: [HsExprArg 'TcpRn]
args)
    go (HsPragE XPragE (GhcPass 'Renamed)
_ HsPragE (GhcPass 'Renamed)
p (L SrcSpanAnnA
l HsExpr (GhcPass 'Renamed)
fun))    AppCtxt
ctxt [HsExprArg 'TcpRn]
args = HsExpr (GhcPass 'Renamed)
-> AppCtxt
-> [HsExprArg 'TcpRn]
-> ((HsExpr (GhcPass 'Renamed), AppCtxt), [HsExprArg 'TcpRn])
go HsExpr (GhcPass 'Renamed)
fun (SrcSpanAnnA -> AppCtxt -> AppCtxt
set SrcSpanAnnA
l AppCtxt
ctxt) (AppCtxt -> HsPragE (GhcPass (XPass 'TcpRn)) -> HsExprArg 'TcpRn
forall (p :: TcPass).
AppCtxt -> HsPragE (GhcPass (XPass p)) -> HsExprArg p
EPrag      AppCtxt
ctxt HsPragE (GhcPass 'Renamed)
HsPragE (GhcPass (XPass 'TcpRn))
p   HsExprArg 'TcpRn -> [HsExprArg 'TcpRn] -> [HsExprArg 'TcpRn]
forall a. a -> [a] -> [a]
: [HsExprArg 'TcpRn]
args)
    go (HsAppType XAppTypeE (GhcPass 'Renamed)
_ (L SrcSpanAnnA
l HsExpr (GhcPass 'Renamed)
fun) LHsWcType (NoGhcTc (GhcPass 'Renamed))
ty) AppCtxt
ctxt [HsExprArg 'TcpRn]
args = HsExpr (GhcPass 'Renamed)
-> AppCtxt
-> [HsExprArg 'TcpRn]
-> ((HsExpr (GhcPass 'Renamed), AppCtxt), [HsExprArg 'TcpRn])
go HsExpr (GhcPass 'Renamed)
fun (SrcSpanAnnA -> AppCtxt -> AppCtxt
dec SrcSpanAnnA
l AppCtxt
ctxt) (AppCtxt -> LHsWcType (GhcPass 'Renamed) -> HsExprArg 'TcpRn
mkETypeArg AppCtxt
ctxt LHsWcType (NoGhcTc (GhcPass 'Renamed))
LHsWcType (GhcPass 'Renamed)
ty  HsExprArg 'TcpRn -> [HsExprArg 'TcpRn] -> [HsExprArg 'TcpRn]
forall a. a -> [a] -> [a]
: [HsExprArg 'TcpRn]
args)
    go (HsApp XApp (GhcPass 'Renamed)
_ (L SrcSpanAnnA
l HsExpr (GhcPass 'Renamed)
fun) LHsExpr (GhcPass 'Renamed)
arg)    AppCtxt
ctxt [HsExprArg 'TcpRn]
args = HsExpr (GhcPass 'Renamed)
-> AppCtxt
-> [HsExprArg 'TcpRn]
-> ((HsExpr (GhcPass 'Renamed), AppCtxt), [HsExprArg 'TcpRn])
go HsExpr (GhcPass 'Renamed)
fun (SrcSpanAnnA -> AppCtxt -> AppCtxt
dec SrcSpanAnnA
l AppCtxt
ctxt) (AppCtxt -> LHsExpr (GhcPass 'Renamed) -> HsExprArg 'TcpRn
mkEValArg  AppCtxt
ctxt LHsExpr (GhcPass 'Renamed)
arg HsExprArg 'TcpRn -> [HsExprArg 'TcpRn] -> [HsExprArg 'TcpRn]
forall a. a -> [a] -> [a]
: [HsExprArg 'TcpRn]
args)

    -- See Note [Looking through HsExpanded]
    go (XExpr (HsExpanded HsExpr (GhcPass 'Renamed)
orig HsExpr (GhcPass 'Renamed)
fun)) AppCtxt
ctxt [HsExprArg 'TcpRn]
args
      = HsExpr (GhcPass 'Renamed)
-> AppCtxt
-> [HsExprArg 'TcpRn]
-> ((HsExpr (GhcPass 'Renamed), AppCtxt), [HsExprArg 'TcpRn])
go HsExpr (GhcPass 'Renamed)
fun (HsExpr (GhcPass 'Renamed) -> SrcSpan -> AppCtxt
VAExpansion HsExpr (GhcPass 'Renamed)
orig (AppCtxt -> SrcSpan
appCtxtLoc AppCtxt
ctxt)) (EWrap -> HsExprArg 'TcpRn
forall (p :: TcPass). EWrap -> HsExprArg p
EWrap (HsExpr (GhcPass 'Renamed) -> EWrap
EExpand HsExpr (GhcPass 'Renamed)
orig) HsExprArg 'TcpRn -> [HsExprArg 'TcpRn] -> [HsExprArg 'TcpRn]
forall a. a -> [a] -> [a]
: [HsExprArg 'TcpRn]
args)

    -- See Note [Desugar OpApp in the typechecker]
    go e :: HsExpr (GhcPass 'Renamed)
e@(OpApp XOpApp (GhcPass 'Renamed)
_ LHsExpr (GhcPass 'Renamed)
arg1 (L SrcSpanAnnA
l HsExpr (GhcPass 'Renamed)
op) LHsExpr (GhcPass 'Renamed)
arg2) AppCtxt
_ [HsExprArg 'TcpRn]
args
      = ( (HsExpr (GhcPass 'Renamed)
op, HsExpr (GhcPass 'Renamed) -> ThLevel -> SrcSpan -> AppCtxt
VACall HsExpr (GhcPass 'Renamed)
op ThLevel
0 (SrcSpanAnnA -> SrcSpan
forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l))
        ,   AppCtxt -> LHsExpr (GhcPass 'Renamed) -> HsExprArg 'TcpRn
mkEValArg (HsExpr (GhcPass 'Renamed) -> ThLevel -> SrcSpan -> AppCtxt
VACall HsExpr (GhcPass 'Renamed)
op ThLevel
1 SrcSpan
generatedSrcSpan) LHsExpr (GhcPass 'Renamed)
arg1
          HsExprArg 'TcpRn -> [HsExprArg 'TcpRn] -> [HsExprArg 'TcpRn]
forall a. a -> [a] -> [a]
: AppCtxt -> LHsExpr (GhcPass 'Renamed) -> HsExprArg 'TcpRn
mkEValArg (HsExpr (GhcPass 'Renamed) -> ThLevel -> SrcSpan -> AppCtxt
VACall HsExpr (GhcPass 'Renamed)
op ThLevel
2 SrcSpan
generatedSrcSpan) LHsExpr (GhcPass 'Renamed)
arg2
          HsExprArg 'TcpRn -> [HsExprArg 'TcpRn] -> [HsExprArg 'TcpRn]
forall a. a -> [a] -> [a]
: EWrap -> HsExprArg 'TcpRn
forall (p :: TcPass). EWrap -> HsExprArg p
EWrap (HsExpr (GhcPass 'Renamed) -> EWrap
EExpand HsExpr (GhcPass 'Renamed)
e)
          HsExprArg 'TcpRn -> [HsExprArg 'TcpRn] -> [HsExprArg 'TcpRn]
forall a. a -> [a] -> [a]
: [HsExprArg 'TcpRn]
args )

    go HsExpr (GhcPass 'Renamed)
e AppCtxt
ctxt [HsExprArg 'TcpRn]
args = ((HsExpr (GhcPass 'Renamed)
e,AppCtxt
ctxt), [HsExprArg 'TcpRn]
args)

    set :: SrcSpanAnnA -> AppCtxt -> AppCtxt
    set :: SrcSpanAnnA -> AppCtxt -> AppCtxt
set SrcSpanAnnA
l (VACall HsExpr (GhcPass 'Renamed)
f ThLevel
n SrcSpan
_)        = HsExpr (GhcPass 'Renamed) -> ThLevel -> SrcSpan -> AppCtxt
VACall HsExpr (GhcPass 'Renamed)
f ThLevel
n (SrcSpanAnnA -> SrcSpan
forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
    set SrcSpanAnnA
_ ctxt :: AppCtxt
ctxt@(VAExpansion {}) = AppCtxt
ctxt

    dec :: SrcSpanAnnA -> AppCtxt -> AppCtxt
    dec :: SrcSpanAnnA -> AppCtxt -> AppCtxt
dec SrcSpanAnnA
l (VACall HsExpr (GhcPass 'Renamed)
f ThLevel
n SrcSpan
_)        = HsExpr (GhcPass 'Renamed) -> ThLevel -> SrcSpan -> AppCtxt
VACall HsExpr (GhcPass 'Renamed)
f (ThLevel
nThLevel -> ThLevel -> ThLevel
forall a. Num a => a -> a -> a
-ThLevel
1) (SrcSpanAnnA -> SrcSpan
forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
l)
    dec SrcSpanAnnA
_ ctxt :: AppCtxt
ctxt@(VAExpansion {}) = AppCtxt
ctxt

rebuildHsApps :: HsExpr GhcTc -> AppCtxt -> [HsExprArg 'TcpTc]-> HsExpr GhcTc
rebuildHsApps :: HsExpr GhcTc -> AppCtxt -> [HsExprArg 'TcpTc] -> HsExpr GhcTc
rebuildHsApps HsExpr GhcTc
fun AppCtxt
_ [] = HsExpr GhcTc
fun
rebuildHsApps HsExpr GhcTc
fun AppCtxt
ctxt (HsExprArg 'TcpTc
arg : [HsExprArg 'TcpTc]
args)
  = case HsExprArg 'TcpTc
arg of
      EValArg { eva_arg :: forall (p :: TcPass). HsExprArg p -> EValArg p
eva_arg = ValArg LHsExpr (GhcPass (XPass 'TcpTc))
arg, eva_ctxt :: forall (p :: TcPass). HsExprArg p -> AppCtxt
eva_ctxt = AppCtxt
ctxt' }
        -> HsExpr GhcTc -> AppCtxt -> [HsExprArg 'TcpTc] -> HsExpr GhcTc
rebuildHsApps (XApp GhcTc -> LHsExpr GhcTc -> LHsExpr GhcTc -> HsExpr GhcTc
forall p. XApp p -> LHsExpr p -> LHsExpr p -> HsExpr p
HsApp XApp GhcTc
EpAnn NoEpAnns
forall a. EpAnn a
noAnn LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
lfun LHsExpr GhcTc
LHsExpr (GhcPass (XPass 'TcpTc))
arg) AppCtxt
ctxt' [HsExprArg 'TcpTc]
args
      ETypeArg { eva_hs_ty :: forall (p :: TcPass). HsExprArg p -> LHsWcType (GhcPass 'Renamed)
eva_hs_ty = LHsWcType (GhcPass 'Renamed)
hs_ty, eva_ty :: forall (p :: TcPass). HsExprArg p -> XETAType p
eva_ty  = XETAType 'TcpTc
ty, eva_ctxt :: forall (p :: TcPass). HsExprArg p -> AppCtxt
eva_ctxt = AppCtxt
ctxt' }
        -> HsExpr GhcTc -> AppCtxt -> [HsExprArg 'TcpTc] -> HsExpr GhcTc
rebuildHsApps (XAppTypeE GhcTc
-> LHsExpr GhcTc -> LHsWcType (NoGhcTc GhcTc) -> HsExpr GhcTc
forall p.
XAppTypeE p -> LHsExpr p -> LHsWcType (NoGhcTc p) -> HsExpr p
HsAppType XAppTypeE GhcTc
XETAType 'TcpTc
ty LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
lfun LHsWcType (NoGhcTc GhcTc)
LHsWcType (GhcPass 'Renamed)
hs_ty) AppCtxt
ctxt' [HsExprArg 'TcpTc]
args
      EPrag AppCtxt
ctxt' HsPragE (GhcPass (XPass 'TcpTc))
p
        -> HsExpr GhcTc -> AppCtxt -> [HsExprArg 'TcpTc] -> HsExpr GhcTc
rebuildHsApps (XPragE GhcTc -> HsPragE GhcTc -> LHsExpr GhcTc -> HsExpr GhcTc
forall p. XPragE p -> HsPragE p -> LHsExpr p -> HsExpr p
HsPragE XPragE GhcTc
NoExtField
noExtField HsPragE GhcTc
HsPragE (GhcPass (XPass 'TcpTc))
p LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
lfun) AppCtxt
ctxt' [HsExprArg 'TcpTc]
args
      EWrap (EPar AppCtxt
ctxt')
        -> HsExpr GhcTc -> AppCtxt -> [HsExprArg 'TcpTc] -> HsExpr GhcTc
rebuildHsApps (LHsExpr GhcTc -> HsExpr GhcTc
forall (id :: Pass). LHsExpr (GhcPass id) -> HsExpr (GhcPass id)
gHsPar LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
lfun) AppCtxt
ctxt' [HsExprArg 'TcpTc]
args
      EWrap (EExpand HsExpr (GhcPass 'Renamed)
orig)
        -> HsExpr GhcTc -> AppCtxt -> [HsExprArg 'TcpTc] -> HsExpr GhcTc
rebuildHsApps (XXExpr GhcTc -> HsExpr GhcTc
forall p. XXExpr p -> HsExpr p
XExpr (HsExpansion (HsExpr (GhcPass 'Renamed)) (HsExpr GhcTc)
-> XXExprGhcTc
ExpansionExpr (HsExpr (GhcPass 'Renamed)
-> HsExpr GhcTc
-> HsExpansion (HsExpr (GhcPass 'Renamed)) (HsExpr GhcTc)
forall orig expanded. orig -> expanded -> HsExpansion orig expanded
HsExpanded HsExpr (GhcPass 'Renamed)
orig HsExpr GhcTc
fun))) AppCtxt
ctxt [HsExprArg 'TcpTc]
args
      EWrap (EHsWrap HsWrapper
wrap)
        -> HsExpr GhcTc -> AppCtxt -> [HsExprArg 'TcpTc] -> HsExpr GhcTc
rebuildHsApps (HsWrapper -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrap HsWrapper
wrap HsExpr GhcTc
fun) AppCtxt
ctxt [HsExprArg 'TcpTc]
args
  where
    lfun :: GenLocated SrcSpanAnnA (HsExpr GhcTc)
lfun = SrcSpanAnnA
-> HsExpr GhcTc -> GenLocated SrcSpanAnnA (HsExpr GhcTc)
forall l e. l -> e -> GenLocated l e
L (SrcSpan -> SrcSpanAnnA
forall ann. SrcSpan -> SrcAnn ann
noAnnSrcSpan (SrcSpan -> SrcSpanAnnA) -> SrcSpan -> SrcSpanAnnA
forall a b. (a -> b) -> a -> b
$ AppCtxt -> SrcSpan
appCtxtLoc AppCtxt
ctxt) HsExpr GhcTc
fun

isHsValArg :: HsExprArg id -> Bool
isHsValArg :: forall (id :: TcPass). HsExprArg id -> Bool
isHsValArg (EValArg {}) = Bool
True
isHsValArg HsExprArg id
_            = Bool
False

countLeadingValArgs :: [HsExprArg id] -> Int
countLeadingValArgs :: forall (id :: TcPass). [HsExprArg id] -> ThLevel
countLeadingValArgs []                   = ThLevel
0
countLeadingValArgs (EValArg {}  : [HsExprArg id]
args) = ThLevel
1 ThLevel -> ThLevel -> ThLevel
forall a. Num a => a -> a -> a
+ [HsExprArg id] -> ThLevel
forall (id :: TcPass). [HsExprArg id] -> ThLevel
countLeadingValArgs [HsExprArg id]
args
countLeadingValArgs (EWrap {}    : [HsExprArg id]
args) = [HsExprArg id] -> ThLevel
forall (id :: TcPass). [HsExprArg id] -> ThLevel
countLeadingValArgs [HsExprArg id]
args
countLeadingValArgs (EPrag {}    : [HsExprArg id]
args) = [HsExprArg id] -> ThLevel
forall (id :: TcPass). [HsExprArg id] -> ThLevel
countLeadingValArgs [HsExprArg id]
args
countLeadingValArgs (ETypeArg {} : [HsExprArg id]
_)    = ThLevel
0

isValArg :: HsExprArg id -> Bool
isValArg :: forall (id :: TcPass). HsExprArg id -> Bool
isValArg (EValArg {}) = Bool
True
isValArg HsExprArg id
_            = Bool
False

isVisibleArg :: HsExprArg id -> Bool
isVisibleArg :: forall (id :: TcPass). HsExprArg id -> Bool
isVisibleArg (EValArg {})  = Bool
True
isVisibleArg (ETypeArg {}) = Bool
True
isVisibleArg HsExprArg id
_             = Bool
False

-- | Count visible and invisible value arguments in a list
-- of 'HsExprArg' arguments.
countVisAndInvisValArgs :: [HsExprArg id] -> Arity
countVisAndInvisValArgs :: forall (id :: TcPass). [HsExprArg id] -> ThLevel
countVisAndInvisValArgs []                  = ThLevel
0
countVisAndInvisValArgs (EValArg {} : [HsExprArg id]
args) = ThLevel
1 ThLevel -> ThLevel -> ThLevel
forall a. Num a => a -> a -> a
+ [HsExprArg id] -> ThLevel
forall (id :: TcPass). [HsExprArg id] -> ThLevel
countVisAndInvisValArgs [HsExprArg id]
args
countVisAndInvisValArgs (EWrap EWrap
wrap : [HsExprArg id]
args) =
  case EWrap
wrap of { EHsWrap HsWrapper
hsWrap            -> HsWrapper -> ThLevel
countHsWrapperInvisArgs HsWrapper
hsWrap ThLevel -> ThLevel -> ThLevel
forall a. Num a => a -> a -> a
+ [HsExprArg id] -> ThLevel
forall (id :: TcPass). [HsExprArg id] -> ThLevel
countVisAndInvisValArgs [HsExprArg id]
args
               ; EPar   {}                 -> [HsExprArg id] -> ThLevel
forall (id :: TcPass). [HsExprArg id] -> ThLevel
countVisAndInvisValArgs [HsExprArg id]
args
               ; EExpand {}                -> [HsExprArg id] -> ThLevel
forall (id :: TcPass). [HsExprArg id] -> ThLevel
countVisAndInvisValArgs [HsExprArg id]
args }
countVisAndInvisValArgs (EPrag {}   : [HsExprArg id]
args) = [HsExprArg id] -> ThLevel
forall (id :: TcPass). [HsExprArg id] -> ThLevel
countVisAndInvisValArgs [HsExprArg id]
args
countVisAndInvisValArgs (ETypeArg {}: [HsExprArg id]
args) = [HsExprArg id] -> ThLevel
forall (id :: TcPass). [HsExprArg id] -> ThLevel
countVisAndInvisValArgs [HsExprArg id]
args

-- | Counts the number of invisible term-level arguments applied by an 'HsWrapper'.
-- Precondition: this wrapper contains no abstractions.
countHsWrapperInvisArgs :: HsWrapper -> Arity
countHsWrapperInvisArgs :: HsWrapper -> ThLevel
countHsWrapperInvisArgs = HsWrapper -> ThLevel
forall {a}. Num a => HsWrapper -> a
go
  where
    go :: HsWrapper -> a
go HsWrapper
WpHole = a
0
    go (WpCompose HsWrapper
wrap1 HsWrapper
wrap2) = HsWrapper -> a
go HsWrapper
wrap1 a -> a -> a
forall a. Num a => a -> a -> a
+ HsWrapper -> a
go HsWrapper
wrap2
    go fun :: HsWrapper
fun@(WpFun {}) = HsWrapper -> a
forall {a} {a}. Outputable a => a -> a
nope HsWrapper
fun
    go (WpCast {}) = a
0
    go evLam :: HsWrapper
evLam@(WpEvLam {}) = HsWrapper -> a
forall {a} {a}. Outputable a => a -> a
nope HsWrapper
evLam
    go (WpEvApp EvTerm
_) = a
1
    go tyLam :: HsWrapper
tyLam@(WpTyLam {}) = HsWrapper -> a
forall {a} {a}. Outputable a => a -> a
nope HsWrapper
tyLam
    go (WpTyApp TcSigmaType
_) = a
0
    go (WpLet TcEvBinds
_) = a
0
    go (WpMultCoercion {}) = a
0

    nope :: a -> a
nope a
x = String -> SDoc -> a
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"countHsWrapperInvisApps" (a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
x)

instance OutputableBndrId (XPass p) => Outputable (HsExprArg p) where
  ppr :: HsExprArg p -> SDoc
ppr (EValArg { eva_arg :: forall (p :: TcPass). HsExprArg p -> EValArg p
eva_arg = EValArg p
arg })      = String -> SDoc
text String
"EValArg" SDoc -> SDoc -> SDoc
<+> EValArg p -> SDoc
forall a. Outputable a => a -> SDoc
ppr EValArg p
arg
  ppr (EPrag AppCtxt
_ HsPragE (GhcPass (XPass p))
p)                      = String -> SDoc
text String
"EPrag" SDoc -> SDoc -> SDoc
<+> HsPragE (GhcPass (XPass p)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsPragE (GhcPass (XPass p))
p
  ppr (ETypeArg { eva_hs_ty :: forall (p :: TcPass). HsExprArg p -> LHsWcType (GhcPass 'Renamed)
eva_hs_ty = LHsWcType (GhcPass 'Renamed)
hs_ty }) = Char -> SDoc
char Char
'@' SDoc -> SDoc -> SDoc
<> HsWildCardBndrs
  (GhcPass 'Renamed)
  (GenLocated SrcSpanAnnA (HsType (GhcPass 'Renamed)))
-> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsWcType (GhcPass 'Renamed)
HsWildCardBndrs
  (GhcPass 'Renamed)
  (GenLocated SrcSpanAnnA (HsType (GhcPass 'Renamed)))
hs_ty
  ppr (EWrap EWrap
wrap)                     = EWrap -> SDoc
forall a. Outputable a => a -> SDoc
ppr EWrap
wrap

instance Outputable EWrap where
  ppr :: EWrap -> SDoc
ppr (EPar AppCtxt
_)       = String -> SDoc
text String
"EPar"
  ppr (EHsWrap HsWrapper
w)    = String -> SDoc
text String
"EHsWrap" SDoc -> SDoc -> SDoc
<+> HsWrapper -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsWrapper
w
  ppr (EExpand HsExpr (GhcPass 'Renamed)
orig) = String -> SDoc
text String
"EExpand" SDoc -> SDoc -> SDoc
<+> HsExpr (GhcPass 'Renamed) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr (GhcPass 'Renamed)
orig

instance OutputableBndrId (XPass p) => Outputable (EValArg p) where
  ppr :: EValArg p -> SDoc
ppr (ValArg LHsExpr (GhcPass (XPass p))
e) = GenLocated SrcSpanAnnA (HsExpr (GhcPass (XPass p))) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass (XPass p))
GenLocated SrcSpanAnnA (HsExpr (GhcPass (XPass p)))
e
  ppr (ValArgQL { va_fun :: EValArg 'TcpInst -> (HsExpr GhcTc, AppCtxt)
va_fun = (HsExpr GhcTc, AppCtxt)
fun, va_args :: EValArg 'TcpInst -> [HsExprArg 'TcpInst]
va_args = [HsExprArg 'TcpInst]
args, va_ty :: EValArg 'TcpInst -> TcSigmaType
va_ty = TcSigmaType
ty})
    = SDoc -> ThLevel -> SDoc -> SDoc
hang (String -> SDoc
text String
"ValArgQL" SDoc -> SDoc -> SDoc
<+> (HsExpr GhcTc, AppCtxt) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HsExpr GhcTc, AppCtxt)
fun)
         ThLevel
2 ([SDoc] -> SDoc
vcat [ [HsExprArg 'TcpInst] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [HsExprArg 'TcpInst]
args, String -> SDoc
text String
"va_ty:" SDoc -> SDoc -> SDoc
<+> TcSigmaType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcSigmaType
ty ])

pprHsExprArgTc :: HsExprArg 'TcpInst -> SDoc
pprHsExprArgTc :: HsExprArg 'TcpInst -> SDoc
pprHsExprArgTc (EValArg { eva_arg :: forall (p :: TcPass). HsExprArg p -> EValArg p
eva_arg = EValArg 'TcpInst
tm, eva_arg_ty :: forall (p :: TcPass). HsExprArg p -> XEVAType p
eva_arg_ty = XEVAType 'TcpInst
ty })
  = String -> SDoc
text String
"EValArg" SDoc -> SDoc -> SDoc
<+> SDoc -> ThLevel -> SDoc -> SDoc
hang (EValArg 'TcpInst -> SDoc
forall a. Outputable a => a -> SDoc
ppr EValArg 'TcpInst
tm) ThLevel
2 (SDoc
dcolon SDoc -> SDoc -> SDoc
<+> Scaled TcSigmaType -> SDoc
forall a. Outputable a => a -> SDoc
ppr Scaled TcSigmaType
XEVAType 'TcpInst
ty)
pprHsExprArgTc HsExprArg 'TcpInst
arg = HsExprArg 'TcpInst -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExprArg 'TcpInst
arg

{- Note [Desugar OpApp in the typechecker]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Operator sections are desugared in the renamer; see GHC.Rename.Expr
Note [Handling overloaded and rebindable constructs].
But for reasons explained there, we rename OpApp to OpApp.  Then,
here in the typechecker, we desugar it to a use of HsExpanded.
That makes it possible to typecheck something like
     e1 `f` e2
where
   f :: forall a. t1 -> forall b. t2 -> t3

Note [Looking through HsExpanded]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When creating an application chain in splitHsApps, we must deal with
     HsExpanded f1 (f `HsApp` e1) `HsApp` e2 `HsApp` e3

as a single application chain `f e1 e2 e3`.  Otherwise stuff like overloaded
labels (#19154) won't work.

It's easy to achieve this: `splitHsApps` unwraps `HsExpanded`.
-}

{- *********************************************************************
*                                                                      *
                 tcInferAppHead
*                                                                      *
********************************************************************* -}

tcInferAppHead :: (HsExpr GhcRn, AppCtxt)
               -> [HsExprArg 'TcpRn]
               -> TcM (HsExpr GhcTc, TcSigmaType)
-- Infer type of the head of an application
--   i.e. the 'f' in (f e1 ... en)
-- See Note [Application chains and heads] in GHC.Tc.Gen.App
-- We get back a /SigmaType/ because we have special cases for
--   * A bare identifier (just look it up)
--     This case also covers a record selector HsRecSel
--   * An expression with a type signature (e :: ty)
-- See Note [Application chains and heads] in GHC.Tc.Gen.App
--
-- Why do we need the arguments to infer the type of the head of the
-- application? Simply to inform add_head_ctxt about whether or not
-- to put push a new "In the expression..." context. (We don't push a
-- new one if there are no arguments, because we already have.)
--
-- Note that [] and (,,) are both HsVar:
--   see Note [Empty lists] and [ExplicitTuple] in GHC.Hs.Expr
--
-- NB: 'e' cannot be HsApp, HsTyApp, HsPrag, HsPar, because those
--     cases are dealt with by splitHsApps.
--
-- See Note [tcApp: typechecking applications] in GHC.Tc.Gen.App
tcInferAppHead :: (HsExpr (GhcPass 'Renamed), AppCtxt)
-> [HsExprArg 'TcpRn] -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferAppHead (HsExpr (GhcPass 'Renamed)
fun,AppCtxt
ctxt) [HsExprArg 'TcpRn]
args
  = SrcSpan
-> TcM (HsExpr GhcTc, TcSigmaType)
-> TcM (HsExpr GhcTc, TcSigmaType)
forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan (AppCtxt -> SrcSpan
appCtxtLoc AppCtxt
ctxt) (TcM (HsExpr GhcTc, TcSigmaType)
 -> TcM (HsExpr GhcTc, TcSigmaType))
-> TcM (HsExpr GhcTc, TcSigmaType)
-> TcM (HsExpr GhcTc, TcSigmaType)
forall a b. (a -> b) -> a -> b
$
    do { Maybe (HsExpr GhcTc, TcSigmaType)
mb_tc_fun <- HsExpr (GhcPass 'Renamed)
-> [HsExprArg 'TcpRn] -> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
tcInferAppHead_maybe HsExpr (GhcPass 'Renamed)
fun [HsExprArg 'TcpRn]
args
       ; case Maybe (HsExpr GhcTc, TcSigmaType)
mb_tc_fun of
            Just (HsExpr GhcTc
fun', TcSigmaType
fun_sigma) -> (HsExpr GhcTc, TcSigmaType) -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsExpr GhcTc
fun', TcSigmaType
fun_sigma)
            Maybe (HsExpr GhcTc, TcSigmaType)
Nothing -> HsExpr (GhcPass 'Renamed)
-> [HsExprArg 'TcpRn]
-> TcM (HsExpr GhcTc, TcSigmaType)
-> TcM (HsExpr GhcTc, TcSigmaType)
forall a.
HsExpr (GhcPass 'Renamed) -> [HsExprArg 'TcpRn] -> TcM a -> TcM a
add_head_ctxt HsExpr (GhcPass 'Renamed)
fun [HsExprArg 'TcpRn]
args (TcM (HsExpr GhcTc, TcSigmaType)
 -> TcM (HsExpr GhcTc, TcSigmaType))
-> TcM (HsExpr GhcTc, TcSigmaType)
-> TcM (HsExpr GhcTc, TcSigmaType)
forall a b. (a -> b) -> a -> b
$
                       (ExpRhoType -> TcM (HsExpr GhcTc))
-> TcM (HsExpr GhcTc, TcSigmaType)
forall a. (ExpRhoType -> TcM a) -> TcM (a, TcSigmaType)
tcInfer (HsExpr (GhcPass 'Renamed) -> ExpRhoType -> TcM (HsExpr GhcTc)
tcExpr HsExpr (GhcPass 'Renamed)
fun) }

tcInferAppHead_maybe :: HsExpr GhcRn
                     -> [HsExprArg 'TcpRn]
                     -> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
-- See Note [Application chains and heads] in GHC.Tc.Gen.App
-- Returns Nothing for a complicated head
tcInferAppHead_maybe :: HsExpr (GhcPass 'Renamed)
-> [HsExprArg 'TcpRn] -> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
tcInferAppHead_maybe HsExpr (GhcPass 'Renamed)
fun [HsExprArg 'TcpRn]
args
  = case HsExpr (GhcPass 'Renamed)
fun of
      HsVar XVar (GhcPass 'Renamed)
_ (L SrcAnn NameAnn
_ Name
nm)          -> (HsExpr GhcTc, TcSigmaType) -> Maybe (HsExpr GhcTc, TcSigmaType)
forall a. a -> Maybe a
Just ((HsExpr GhcTc, TcSigmaType) -> Maybe (HsExpr GhcTc, TcSigmaType))
-> TcM (HsExpr GhcTc, TcSigmaType)
-> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Name -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferId Name
nm
      HsRecSel XRecSel (GhcPass 'Renamed)
_ FieldOcc (GhcPass 'Renamed)
f              -> (HsExpr GhcTc, TcSigmaType) -> Maybe (HsExpr GhcTc, TcSigmaType)
forall a. a -> Maybe a
Just ((HsExpr GhcTc, TcSigmaType) -> Maybe (HsExpr GhcTc, TcSigmaType))
-> TcM (HsExpr GhcTc, TcSigmaType)
-> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> FieldOcc (GhcPass 'Renamed) -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferRecSelId FieldOcc (GhcPass 'Renamed)
f
      ExprWithTySig XExprWithTySig (GhcPass 'Renamed)
_ LHsExpr (GhcPass 'Renamed)
e LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
hs_ty   -> HsExpr (GhcPass 'Renamed)
-> [HsExprArg 'TcpRn]
-> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
-> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
forall a.
HsExpr (GhcPass 'Renamed) -> [HsExprArg 'TcpRn] -> TcM a -> TcM a
add_head_ctxt HsExpr (GhcPass 'Renamed)
fun [HsExprArg 'TcpRn]
args (TcM (Maybe (HsExpr GhcTc, TcSigmaType))
 -> TcM (Maybe (HsExpr GhcTc, TcSigmaType)))
-> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
-> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
forall a b. (a -> b) -> a -> b
$
                                   (HsExpr GhcTc, TcSigmaType) -> Maybe (HsExpr GhcTc, TcSigmaType)
forall a. a -> Maybe a
Just ((HsExpr GhcTc, TcSigmaType) -> Maybe (HsExpr GhcTc, TcSigmaType))
-> TcM (HsExpr GhcTc, TcSigmaType)
-> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> LHsExpr (GhcPass 'Renamed)
-> LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
-> TcM (HsExpr GhcTc, TcSigmaType)
tcExprWithSig LHsExpr (GhcPass 'Renamed)
e LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
hs_ty
      HsOverLit XOverLitE (GhcPass 'Renamed)
_ HsOverLit (GhcPass 'Renamed)
lit           -> (HsExpr GhcTc, TcSigmaType) -> Maybe (HsExpr GhcTc, TcSigmaType)
forall a. a -> Maybe a
Just ((HsExpr GhcTc, TcSigmaType) -> Maybe (HsExpr GhcTc, TcSigmaType))
-> TcM (HsExpr GhcTc, TcSigmaType)
-> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> HsOverLit (GhcPass 'Renamed) -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferOverLit HsOverLit (GhcPass 'Renamed)
lit
      HsSpliceE XSpliceE (GhcPass 'Renamed)
_ (HsSpliced XSpliced (GhcPass 'Renamed)
_ ThModFinalizers
_ (HsSplicedExpr HsExpr (GhcPass 'Renamed)
e))
                                -> HsExpr (GhcPass 'Renamed)
-> [HsExprArg 'TcpRn] -> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
tcInferAppHead_maybe HsExpr (GhcPass 'Renamed)
e [HsExprArg 'TcpRn]
args
      HsExpr (GhcPass 'Renamed)
_                         -> Maybe (HsExpr GhcTc, TcSigmaType)
-> TcM (Maybe (HsExpr GhcTc, TcSigmaType))
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (HsExpr GhcTc, TcSigmaType)
forall a. Maybe a
Nothing

add_head_ctxt :: HsExpr GhcRn -> [HsExprArg 'TcpRn] -> TcM a -> TcM a
-- Don't push an expression context if the arguments are empty,
-- because it has already been pushed by tcExpr
add_head_ctxt :: forall a.
HsExpr (GhcPass 'Renamed) -> [HsExprArg 'TcpRn] -> TcM a -> TcM a
add_head_ctxt HsExpr (GhcPass 'Renamed)
fun [HsExprArg 'TcpRn]
args TcM a
thing_inside
  | [HsExprArg 'TcpRn] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [HsExprArg 'TcpRn]
args = TcM a
thing_inside
  | Bool
otherwise = HsExpr (GhcPass 'Renamed) -> TcM a -> TcM a
forall a. HsExpr (GhcPass 'Renamed) -> TcRn a -> TcRn a
addExprCtxt HsExpr (GhcPass 'Renamed)
fun TcM a
thing_inside


{- *********************************************************************
*                                                                      *
                 Record selectors
*                                                                      *
********************************************************************* -}

tcInferRecSelId :: FieldOcc GhcRn
                -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferRecSelId :: FieldOcc (GhcPass 'Renamed) -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferRecSelId (FieldOcc XCFieldOcc (GhcPass 'Renamed)
sel_name XRec (GhcPass 'Renamed) RdrName
lbl)
   = do { Id
sel_id <- TcM Id
tc_rec_sel_id
        ; let expr :: HsExpr GhcTc
expr = XRecSel GhcTc -> FieldOcc GhcTc -> HsExpr GhcTc
forall p. XRecSel p -> FieldOcc p -> HsExpr p
HsRecSel XRecSel GhcTc
NoExtField
noExtField (XCFieldOcc GhcTc -> XRec GhcTc RdrName -> FieldOcc GhcTc
forall pass. XCFieldOcc pass -> XRec pass RdrName -> FieldOcc pass
FieldOcc XCFieldOcc GhcTc
Id
sel_id XRec (GhcPass 'Renamed) RdrName
XRec GhcTc RdrName
lbl)
        ; (HsExpr GhcTc, TcSigmaType) -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsExpr GhcTc
expr, Id -> TcSigmaType
idType Id
sel_id)
        }
     where
       occ :: OccName
       occ :: OccName
occ = RdrName -> OccName
rdrNameOcc (GenLocated (SrcAnn NameAnn) RdrName -> RdrName
forall l e. GenLocated l e -> e
unLoc XRec (GhcPass 'Renamed) RdrName
GenLocated (SrcAnn NameAnn) RdrName
lbl)

       tc_rec_sel_id :: TcM TcId
       -- Like tc_infer_id, but returns an Id not a HsExpr,
       -- so we can wrap it back up into a HsRecSel
       tc_rec_sel_id :: TcM Id
tc_rec_sel_id
         = do { TcTyThing
thing <- Name -> TcM TcTyThing
tcLookup XCFieldOcc (GhcPass 'Renamed)
Name
sel_name
              ; case TcTyThing
thing of
                    ATcId { tct_id :: TcTyThing -> Id
tct_id = Id
id }
                      -> do { OccName -> Id -> TcM ()
check_naughty OccName
occ Id
id  -- See Note [Local record selectors]
                            ; Id -> TcM ()
check_local_id Id
id
                            ; Id -> TcM Id
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Id
id }

                    AGlobal (AnId Id
id)
                      -> do { OccName -> Id -> TcM ()
check_naughty OccName
occ Id
id
                            ; Id -> TcM Id
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Id
id }
                           -- A global cannot possibly be ill-staged
                           -- nor does it need the 'lifting' treatment
                           -- hence no checkTh stuff here

                    TcTyThing
_ -> TcRnMessage -> TcM Id
forall a. TcRnMessage -> TcM a
failWithTc (TcRnMessage -> TcM Id) -> TcRnMessage -> TcM Id
forall a b. (a -> b) -> a -> b
$ DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints (SDoc -> DiagnosticMessage) -> SDoc -> DiagnosticMessage
forall a b. (a -> b) -> a -> b
$
                         TcTyThing -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyThing
thing SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"used where a value identifier was expected" }

------------------------

-- A type signature on the argument of an ambiguous record selector or
-- the record expression in an update must be "obvious", i.e. the
-- outermost constructor ignoring parentheses.
obviousSig :: HsExpr GhcRn -> Maybe (LHsSigWcType GhcRn)
obviousSig :: HsExpr (GhcPass 'Renamed)
-> Maybe (LHsSigWcType (GhcPass 'Renamed))
obviousSig (ExprWithTySig XExprWithTySig (GhcPass 'Renamed)
_ LHsExpr (GhcPass 'Renamed)
_ LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
ty) = HsWildCardBndrs
  (GhcPass 'Renamed)
  (GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Renamed)))
-> Maybe
     (HsWildCardBndrs
        (GhcPass 'Renamed)
        (GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Renamed))))
forall a. a -> Maybe a
Just LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
HsWildCardBndrs
  (GhcPass 'Renamed)
  (GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Renamed)))
ty
obviousSig (HsPar XPar (GhcPass 'Renamed)
_ LHsToken "(" (GhcPass 'Renamed)
_ LHsExpr (GhcPass 'Renamed)
p LHsToken ")" (GhcPass 'Renamed)
_)        = HsExpr (GhcPass 'Renamed)
-> Maybe (LHsSigWcType (GhcPass 'Renamed))
obviousSig (GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed))
-> HsExpr (GhcPass 'Renamed)
forall l e. GenLocated l e -> e
unLoc LHsExpr (GhcPass 'Renamed)
GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed))
p)
obviousSig (HsPragE XPragE (GhcPass 'Renamed)
_ HsPragE (GhcPass 'Renamed)
_ LHsExpr (GhcPass 'Renamed)
p)        = HsExpr (GhcPass 'Renamed)
-> Maybe (LHsSigWcType (GhcPass 'Renamed))
obviousSig (GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed))
-> HsExpr (GhcPass 'Renamed)
forall l e. GenLocated l e -> e
unLoc LHsExpr (GhcPass 'Renamed)
GenLocated SrcSpanAnnA (HsExpr (GhcPass 'Renamed))
p)
obviousSig HsExpr (GhcPass 'Renamed)
_                      = Maybe (LHsSigWcType (GhcPass 'Renamed))
Maybe
  (HsWildCardBndrs
     (GhcPass 'Renamed)
     (GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Renamed))))
forall a. Maybe a
Nothing

-- Extract the outermost TyCon of a type, if there is one; for
-- data families this is the representation tycon (because that's
-- where the fields live).
tyConOf :: FamInstEnvs -> TcSigmaType -> Maybe TyCon
tyConOf :: FamInstEnvs -> TcSigmaType -> Maybe TyCon
tyConOf FamInstEnvs
fam_inst_envs TcSigmaType
ty0
  = case HasCallStack => TcSigmaType -> Maybe (TyCon, [TcSigmaType])
TcSigmaType -> Maybe (TyCon, [TcSigmaType])
tcSplitTyConApp_maybe TcSigmaType
ty of
      Just (TyCon
tc, [TcSigmaType]
tys) -> TyCon -> Maybe TyCon
forall a. a -> Maybe a
Just ((TyCon, [TcSigmaType], Coercion) -> TyCon
forall a b c. (a, b, c) -> a
fstOf3 (FamInstEnvs
-> TyCon -> [TcSigmaType] -> (TyCon, [TcSigmaType], Coercion)
tcLookupDataFamInst FamInstEnvs
fam_inst_envs TyCon
tc [TcSigmaType]
tys))
      Maybe (TyCon, [TcSigmaType])
Nothing        -> Maybe TyCon
forall a. Maybe a
Nothing
  where
    ([Id]
_, [TcSigmaType]
_, TcSigmaType
ty) = TcSigmaType -> ([Id], [TcSigmaType], TcSigmaType)
tcSplitSigmaTy TcSigmaType
ty0

-- Variant of tyConOf that works for ExpTypes
tyConOfET :: FamInstEnvs -> ExpRhoType -> Maybe TyCon
tyConOfET :: FamInstEnvs -> ExpRhoType -> Maybe TyCon
tyConOfET FamInstEnvs
fam_inst_envs ExpRhoType
ty0 = FamInstEnvs -> TcSigmaType -> Maybe TyCon
tyConOf FamInstEnvs
fam_inst_envs (TcSigmaType -> Maybe TyCon) -> Maybe TcSigmaType -> Maybe TyCon
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ExpRhoType -> Maybe TcSigmaType
checkingExpType_maybe ExpRhoType
ty0


-- For an ambiguous record field, find all the candidate record
-- selectors (as GlobalRdrElts) and their parents.
lookupParents :: Bool -> RdrName -> RnM [(RecSelParent, GlobalRdrElt)]
lookupParents :: Bool -> RdrName -> RnM [(RecSelParent, GlobalRdrElt)]
lookupParents Bool
is_selector RdrName
rdr
  = do { GlobalRdrEnv
env <- TcRn GlobalRdrEnv
getGlobalRdrEnv
        -- Filter by isRecFldGRE because otherwise a non-selector variable with
        -- an overlapping name can get through when NoFieldSelectors is enabled.
        -- See Note [NoFieldSelectors] in GHC.Rename.Env.
       ; let all_gres :: [GlobalRdrElt]
all_gres = RdrName -> GlobalRdrEnv -> [GlobalRdrElt]
lookupGRE_RdrName' RdrName
rdr GlobalRdrEnv
env
       ; let gres :: [GlobalRdrElt]
gres | Bool
is_selector = (GlobalRdrElt -> Bool) -> [GlobalRdrElt] -> [GlobalRdrElt]
forall a. (a -> Bool) -> [a] -> [a]
filter GlobalRdrElt -> Bool
isFieldSelectorGRE [GlobalRdrElt]
all_gres
                  | Bool
otherwise   = (GlobalRdrElt -> Bool) -> [GlobalRdrElt] -> [GlobalRdrElt]
forall a. (a -> Bool) -> [a] -> [a]
filter GlobalRdrElt -> Bool
isRecFldGRE [GlobalRdrElt]
all_gres
       ; (GlobalRdrElt
 -> IOEnv (Env TcGblEnv TcLclEnv) (RecSelParent, GlobalRdrElt))
-> [GlobalRdrElt] -> RnM [(RecSelParent, GlobalRdrElt)]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM GlobalRdrElt
-> IOEnv (Env TcGblEnv TcLclEnv) (RecSelParent, GlobalRdrElt)
lookupParent [GlobalRdrElt]
gres }
  where
    lookupParent :: GlobalRdrElt -> RnM (RecSelParent, GlobalRdrElt)
    lookupParent :: GlobalRdrElt
-> IOEnv (Env TcGblEnv TcLclEnv) (RecSelParent, GlobalRdrElt)
lookupParent GlobalRdrElt
gre = do { Id
id <- Name -> TcM Id
tcLookupId (GlobalRdrElt -> Name
greMangledName GlobalRdrElt
gre)
                          ; case Id -> Maybe RecSelParent
recordSelectorTyCon_maybe Id
id of
                              Just RecSelParent
rstc -> (RecSelParent, GlobalRdrElt)
-> IOEnv (Env TcGblEnv TcLclEnv) (RecSelParent, GlobalRdrElt)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (RecSelParent
rstc, GlobalRdrElt
gre)
                              Maybe RecSelParent
Nothing -> TcRnMessage
-> IOEnv (Env TcGblEnv TcLclEnv) (RecSelParent, GlobalRdrElt)
forall a. TcRnMessage -> TcM a
failWithTc (Name -> TcRnMessage
notSelector (GlobalRdrElt -> Name
greMangledName GlobalRdrElt
gre)) }


fieldNotInType :: RecSelParent -> RdrName -> TcRnMessage
fieldNotInType :: RecSelParent -> RdrName -> TcRnMessage
fieldNotInType RecSelParent
p RdrName
rdr
  = RdrName -> NotInScopeError -> TcRnMessage
mkTcRnNotInScope RdrName
rdr (NotInScopeError -> TcRnMessage) -> NotInScopeError -> TcRnMessage
forall a b. (a -> b) -> a -> b
$
    SDoc -> NotInScopeError
UnknownSubordinate (String -> SDoc
text String
"field of type" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (RecSelParent -> SDoc
forall a. Outputable a => a -> SDoc
ppr RecSelParent
p))

notSelector :: Name -> TcRnMessage
notSelector :: Name -> TcRnMessage
notSelector Name
field
  = DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints (SDoc -> DiagnosticMessage) -> SDoc -> DiagnosticMessage
forall a b. (a -> b) -> a -> b
$
  [SDoc] -> SDoc
hsep [SDoc -> SDoc
quotes (Name -> SDoc
forall a. Outputable a => a -> SDoc
ppr Name
field), String -> SDoc
text String
"is not a record selector"]

naughtyRecordSel :: OccName -> TcRnMessage
naughtyRecordSel :: OccName -> TcRnMessage
naughtyRecordSel OccName
lbl
  = DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints (SDoc -> DiagnosticMessage) -> SDoc -> DiagnosticMessage
forall a b. (a -> b) -> a -> b
$
    String -> SDoc
text String
"Cannot use record selector" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (OccName -> SDoc
forall a. Outputable a => a -> SDoc
ppr OccName
lbl) SDoc -> SDoc -> SDoc
<+>
    String -> SDoc
text String
"as a function due to escaped type variables" SDoc -> SDoc -> SDoc
$$
    String -> SDoc
text String
"Probable fix: use pattern-matching syntax instead"


{- *********************************************************************
*                                                                      *
                Expressions with a type signature
                        expr :: type
*                                                                      *
********************************************************************* -}

tcExprWithSig :: LHsExpr GhcRn -> LHsSigWcType (NoGhcTc GhcRn)
              -> TcM (HsExpr GhcTc, TcSigmaType)
tcExprWithSig :: LHsExpr (GhcPass 'Renamed)
-> LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
-> TcM (HsExpr GhcTc, TcSigmaType)
tcExprWithSig LHsExpr (GhcPass 'Renamed)
expr LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
hs_ty
  = do { TcIdSigInfo
sig_info <- TcM TcIdSigInfo -> TcM TcIdSigInfo
forall r. TcM r -> TcM r
checkNoErrs (TcM TcIdSigInfo -> TcM TcIdSigInfo)
-> TcM TcIdSigInfo -> TcM TcIdSigInfo
forall a b. (a -> b) -> a -> b
$  -- Avoid error cascade
                     SrcSpan
-> LHsSigWcType (GhcPass 'Renamed) -> Maybe Name -> TcM TcIdSigInfo
tcUserTypeSig SrcSpan
loc LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
LHsSigWcType (GhcPass 'Renamed)
hs_ty Maybe Name
forall a. Maybe a
Nothing
       ; (GenLocated SrcSpanAnnA (HsExpr GhcTc)
expr', TcSigmaType
poly_ty) <- UserTypeCtxt
-> LHsExpr (GhcPass 'Renamed)
-> TcIdSigInfo
-> TcM (LHsExpr GhcTc, TcSigmaType)
tcExprSig UserTypeCtxt
ctxt LHsExpr (GhcPass 'Renamed)
expr TcIdSigInfo
sig_info
       ; (HsExpr GhcTc, TcSigmaType) -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (XExprWithTySig GhcTc
-> LHsExpr GhcTc -> LHsSigWcType (NoGhcTc GhcTc) -> HsExpr GhcTc
forall p.
XExprWithTySig p
-> LHsExpr p -> LHsSigWcType (NoGhcTc p) -> HsExpr p
ExprWithTySig XExprWithTySig GhcTc
NoExtField
noExtField LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
expr' LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
LHsSigWcType (NoGhcTc GhcTc)
hs_ty, TcSigmaType
poly_ty) }
  where
    loc :: SrcSpan
loc = GenLocated SrcSpanAnnA (HsSigType (GhcPass 'Renamed)) -> SrcSpan
forall a e. GenLocated (SrcSpanAnn' a) e -> SrcSpan
getLocA (LHsSigWcType (GhcPass 'Renamed) -> LHsSigType (GhcPass 'Renamed)
forall pass. LHsSigWcType pass -> LHsSigType pass
dropWildCards LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
LHsSigWcType (GhcPass 'Renamed)
hs_ty)
    ctxt :: UserTypeCtxt
ctxt = ReportRedundantConstraints -> UserTypeCtxt
ExprSigCtxt (LHsSigWcType (GhcPass 'Renamed) -> ReportRedundantConstraints
lhsSigWcTypeContextSpan LHsSigWcType (NoGhcTc (GhcPass 'Renamed))
LHsSigWcType (GhcPass 'Renamed)
hs_ty)

tcExprSig :: UserTypeCtxt -> LHsExpr GhcRn -> TcIdSigInfo -> TcM (LHsExpr GhcTc, TcType)
tcExprSig :: UserTypeCtxt
-> LHsExpr (GhcPass 'Renamed)
-> TcIdSigInfo
-> TcM (LHsExpr GhcTc, TcSigmaType)
tcExprSig UserTypeCtxt
ctxt LHsExpr (GhcPass 'Renamed)
expr (CompleteSig { sig_bndr :: TcIdSigInfo -> Id
sig_bndr = Id
poly_id, sig_loc :: TcIdSigInfo -> SrcSpan
sig_loc = SrcSpan
loc })
  = SrcSpan
-> TcM (LHsExpr GhcTc, TcSigmaType)
-> TcM (LHsExpr GhcTc, TcSigmaType)
forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan SrcSpan
loc (TcM (LHsExpr GhcTc, TcSigmaType)
 -> TcM (LHsExpr GhcTc, TcSigmaType))
-> TcM (LHsExpr GhcTc, TcSigmaType)
-> TcM (LHsExpr GhcTc, TcSigmaType)
forall a b. (a -> b) -> a -> b
$   -- Sets the location for the implication constraint
    do { let poly_ty :: TcSigmaType
poly_ty = Id -> TcSigmaType
idType Id
poly_id
       ; (HsWrapper
wrap, GenLocated SrcSpanAnnA (HsExpr GhcTc)
expr') <- UserTypeCtxt
-> TcSigmaType
-> (TcSigmaType -> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
-> TcM (HsWrapper, GenLocated SrcSpanAnnA (HsExpr GhcTc))
forall result.
UserTypeCtxt
-> TcSigmaType
-> (TcSigmaType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseScoped UserTypeCtxt
ctxt TcSigmaType
poly_ty ((TcSigmaType -> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
 -> TcM (HsWrapper, GenLocated SrcSpanAnnA (HsExpr GhcTc)))
-> (TcSigmaType -> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
-> TcM (HsWrapper, GenLocated SrcSpanAnnA (HsExpr GhcTc))
forall a b. (a -> b) -> a -> b
$ \TcSigmaType
rho_ty ->
                          LHsExpr (GhcPass 'Renamed) -> TcSigmaType -> TcM (LHsExpr GhcTc)
tcCheckMonoExprNC LHsExpr (GhcPass 'Renamed)
expr TcSigmaType
rho_ty
       ; (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcSigmaType)
-> IOEnv
     (Env TcGblEnv TcLclEnv)
     (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> LHsExpr GhcTc -> LHsExpr GhcTc
mkLHsWrap HsWrapper
wrap LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
expr', TcSigmaType
poly_ty) }

tcExprSig UserTypeCtxt
_ LHsExpr (GhcPass 'Renamed)
expr sig :: TcIdSigInfo
sig@(PartialSig { psig_name :: TcIdSigInfo -> Name
psig_name = Name
name, sig_loc :: TcIdSigInfo -> SrcSpan
sig_loc = SrcSpan
loc })
  = SrcSpan
-> TcM (LHsExpr GhcTc, TcSigmaType)
-> TcM (LHsExpr GhcTc, TcSigmaType)
forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan SrcSpan
loc (TcM (LHsExpr GhcTc, TcSigmaType)
 -> TcM (LHsExpr GhcTc, TcSigmaType))
-> TcM (LHsExpr GhcTc, TcSigmaType)
-> TcM (LHsExpr GhcTc, TcSigmaType)
forall a b. (a -> b) -> a -> b
$   -- Sets the location for the implication constraint
    do { (TcLevel
tclvl, WantedConstraints
wanted, (GenLocated SrcSpanAnnA (HsExpr GhcTc)
expr', TcIdSigInst
sig_inst))
             <- TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcIdSigInst)
-> TcM
     (TcLevel, WantedConstraints,
      (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcIdSigInst))
forall a. TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndCaptureConstraints  (TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcIdSigInst)
 -> TcM
      (TcLevel, WantedConstraints,
       (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcIdSigInst)))
-> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcIdSigInst)
-> TcM
     (TcLevel, WantedConstraints,
      (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcIdSigInst))
forall a b. (a -> b) -> a -> b
$
                do { TcIdSigInst
sig_inst <- TcIdSigInfo -> TcM TcIdSigInst
tcInstSig TcIdSigInfo
sig
                   ; GenLocated SrcSpanAnnA (HsExpr GhcTc)
expr' <- [(Name, Id)]
-> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc))
-> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc))
forall r. [(Name, Id)] -> TcM r -> TcM r
tcExtendNameTyVarEnv ((InvisTVBinder -> Id) -> [(Name, InvisTVBinder)] -> [(Name, Id)]
forall b c a. (b -> c) -> [(a, b)] -> [(a, c)]
mapSnd InvisTVBinder -> Id
forall tv argf. VarBndr tv argf -> tv
binderVar ([(Name, InvisTVBinder)] -> [(Name, Id)])
-> [(Name, InvisTVBinder)] -> [(Name, Id)]
forall a b. (a -> b) -> a -> b
$ TcIdSigInst -> [(Name, InvisTVBinder)]
sig_inst_skols TcIdSigInst
sig_inst) (TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc))
 -> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
-> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc))
-> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc))
forall a b. (a -> b) -> a -> b
$
                              [(Name, Id)] -> TcM (LHsExpr GhcTc) -> TcM (LHsExpr GhcTc)
forall r. [(Name, Id)] -> TcM r -> TcM r
tcExtendNameTyVarEnv (TcIdSigInst -> [(Name, Id)]
sig_inst_wcs   TcIdSigInst
sig_inst) (TcM (LHsExpr GhcTc) -> TcM (LHsExpr GhcTc))
-> TcM (LHsExpr GhcTc) -> TcM (LHsExpr GhcTc)
forall a b. (a -> b) -> a -> b
$
                              LHsExpr (GhcPass 'Renamed) -> TcSigmaType -> TcM (LHsExpr GhcTc)
tcCheckPolyExprNC LHsExpr (GhcPass 'Renamed)
expr (TcIdSigInst -> TcSigmaType
sig_inst_tau TcIdSigInst
sig_inst)
                   ; (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcIdSigInst)
-> TcM (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcIdSigInst)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (GenLocated SrcSpanAnnA (HsExpr GhcTc)
expr', TcIdSigInst
sig_inst) }
       -- See Note [Partial expression signatures]
       ; let tau :: TcSigmaType
tau = TcIdSigInst -> TcSigmaType
sig_inst_tau TcIdSigInst
sig_inst
             infer_mode :: InferMode
infer_mode | [TcSigmaType] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null (TcIdSigInst -> [TcSigmaType]
sig_inst_theta TcIdSigInst
sig_inst)
                        , Maybe TcSigmaType -> Bool
forall a. Maybe a -> Bool
isNothing (TcIdSigInst -> Maybe TcSigmaType
sig_inst_wcx TcIdSigInst
sig_inst)
                        = InferMode
ApplyMR
                        | Bool
otherwise
                        = InferMode
NoRestrictions
       ; (([Id]
qtvs, [Id]
givens, TcEvBinds
ev_binds, Bool
_), WantedConstraints
residual)
           <- TcM ([Id], [Id], TcEvBinds, Bool)
-> TcM (([Id], [Id], TcEvBinds, Bool), WantedConstraints)
forall a. TcM a -> TcM (a, WantedConstraints)
captureConstraints (TcM ([Id], [Id], TcEvBinds, Bool)
 -> TcM (([Id], [Id], TcEvBinds, Bool), WantedConstraints))
-> TcM ([Id], [Id], TcEvBinds, Bool)
-> TcM (([Id], [Id], TcEvBinds, Bool), WantedConstraints)
forall a b. (a -> b) -> a -> b
$ TcLevel
-> InferMode
-> [TcIdSigInst]
-> [(Name, TcSigmaType)]
-> WantedConstraints
-> TcM ([Id], [Id], TcEvBinds, Bool)
simplifyInfer TcLevel
tclvl InferMode
infer_mode [TcIdSigInst
sig_inst] [(Name
name, TcSigmaType
tau)] WantedConstraints
wanted
       ; WantedConstraints -> TcM ()
emitConstraints WantedConstraints
residual

       ; TcSigmaType
tau <- TcSigmaType -> TcM TcSigmaType
zonkTcType TcSigmaType
tau
       ; let inferred_theta :: [TcSigmaType]
inferred_theta = (Id -> TcSigmaType) -> [Id] -> [TcSigmaType]
forall a b. (a -> b) -> [a] -> [b]
map Id -> TcSigmaType
evVarPred [Id]
givens
             tau_tvs :: TyCoVarSet
tau_tvs        = TcSigmaType -> TyCoVarSet
tyCoVarsOfType TcSigmaType
tau
       ; ([InvisTVBinder]
binders, [TcSigmaType]
my_theta) <- WantedConstraints
-> [TcSigmaType]
-> TyCoVarSet
-> [Id]
-> Maybe TcIdSigInst
-> TcM ([InvisTVBinder], [TcSigmaType])
chooseInferredQuantifiers WantedConstraints
residual [TcSigmaType]
inferred_theta
                                   TyCoVarSet
tau_tvs [Id]
qtvs (TcIdSigInst -> Maybe TcIdSigInst
forall a. a -> Maybe a
Just TcIdSigInst
sig_inst)
       ; let inferred_sigma :: TcSigmaType
inferred_sigma = [Id] -> [TcSigmaType] -> TcSigmaType -> TcSigmaType
mkInfSigmaTy [Id]
qtvs [TcSigmaType]
inferred_theta TcSigmaType
tau
             my_sigma :: TcSigmaType
my_sigma       = [InvisTVBinder] -> TcSigmaType -> TcSigmaType
mkInvisForAllTys [InvisTVBinder]
binders ([TcSigmaType] -> TcSigmaType -> TcSigmaType
mkPhiTy  [TcSigmaType]
my_theta TcSigmaType
tau)
       ; HsWrapper
wrap <- if TcSigmaType
inferred_sigma TcSigmaType -> TcSigmaType -> Bool
`eqType` TcSigmaType
my_sigma -- NB: eqType ignores vis.
                 then HsWrapper -> IOEnv (Env TcGblEnv TcLclEnv) HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return HsWrapper
idHsWrapper  -- Fast path; also avoids complaint when we infer
                                          -- an ambiguous type and have AllowAmbiguousType
                                          -- e..g infer  x :: forall a. F a -> Int
                 else CtOrigin
-> UserTypeCtxt
-> TcSigmaType
-> TcSigmaType
-> IOEnv (Env TcGblEnv TcLclEnv) HsWrapper
tcSubTypeSigma CtOrigin
ExprSigOrigin (ReportRedundantConstraints -> UserTypeCtxt
ExprSigCtxt ReportRedundantConstraints
NoRRC) TcSigmaType
inferred_sigma TcSigmaType
my_sigma

       ; String -> SDoc -> TcM ()
traceTc String
"tcExpSig" ([Id] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Id]
qtvs SDoc -> SDoc -> SDoc
$$ [Id] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Id]
givens SDoc -> SDoc -> SDoc
$$ TcSigmaType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcSigmaType
inferred_sigma SDoc -> SDoc -> SDoc
$$ TcSigmaType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcSigmaType
my_sigma)
       ; let poly_wrap :: HsWrapper
poly_wrap = HsWrapper
wrap
                         HsWrapper -> HsWrapper -> HsWrapper
<.> [Id] -> HsWrapper
mkWpTyLams [Id]
qtvs
                         HsWrapper -> HsWrapper -> HsWrapper
<.> [Id] -> HsWrapper
mkWpLams [Id]
givens
                         HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet  TcEvBinds
ev_binds
       ; (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcSigmaType)
-> IOEnv
     (Env TcGblEnv TcLclEnv)
     (GenLocated SrcSpanAnnA (HsExpr GhcTc), TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> LHsExpr GhcTc -> LHsExpr GhcTc
mkLHsWrap HsWrapper
poly_wrap LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
expr', TcSigmaType
my_sigma) }


{- Note [Partial expression signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Partial type signatures on expressions are easy to get wrong.  But
here is a guiding principile
    e :: ty
should behave like
    let x :: ty
        x = e
    in x

So for partial signatures we apply the MR if no context is given.  So
   e :: IO _          apply the MR
   e :: _ => IO _     do not apply the MR
just like in GHC.Tc.Gen.Bind.decideGeneralisationPlan

This makes a difference (#11670):
   peek :: Ptr a -> IO CLong
   peek ptr = peekElemOff undefined 0 :: _
from (peekElemOff undefined 0) we get
          type: IO w
   constraints: Storable w

We must NOT try to generalise over 'w' because the signature specifies
no constraints so we'll complain about not being able to solve
Storable w.  Instead, don't generalise; then _ gets instantiated to
CLong, as it should.
-}


{- *********************************************************************
*                                                                      *
                 Overloaded literals
*                                                                      *
********************************************************************* -}

tcInferOverLit :: HsOverLit GhcRn -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferOverLit :: HsOverLit (GhcPass 'Renamed) -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferOverLit lit :: HsOverLit (GhcPass 'Renamed)
lit@(OverLit { ol_val :: forall p. HsOverLit p -> OverLitVal
ol_val = OverLitVal
val
                            , ol_ext :: forall p. HsOverLit p -> XOverLit p
ol_ext = OverLitRn { $sel:ol_rebindable:OverLitRn :: OverLitRn -> Bool
ol_rebindable = Bool
rebindable
                                                 , $sel:ol_from_fun:OverLitRn :: OverLitRn -> LIdP (GhcPass 'Renamed)
ol_from_fun = L SrcAnn NameAnn
loc Name
from_name } })
  = -- Desugar "3" to (fromInteger (3 :: Integer))
    --   where fromInteger is gotten by looking up from_name, and
    --   the (3 :: Integer) is returned by mkOverLit
    -- Ditto the string literal "foo" to (fromString ("foo" :: String))
    do { HsLit GhcTc
hs_lit <- OverLitVal -> TcM (HsLit GhcTc)
mkOverLit OverLitVal
val
       ; Id
from_id <- Name -> TcM Id
tcLookupId Name
from_name
       ; (HsWrapper
wrap1, TcSigmaType
from_ty) <- CtOrigin -> TcSigmaType -> TcM (HsWrapper, TcSigmaType)
topInstantiate (HsOverLit (GhcPass 'Renamed) -> CtOrigin
LiteralOrigin HsOverLit (GhcPass 'Renamed)
lit) (Id -> TcSigmaType
idType Id
from_id)
       ; let
           thing :: TypedThing
thing    = Name -> TypedThing
NameThing Name
from_name
           mb_thing :: Maybe TypedThing
mb_thing = TypedThing -> Maybe TypedThing
forall a. a -> Maybe a
Just TypedThing
thing
           herald :: ExpectedFunTyOrigin
herald   = TypedThing -> HsExpr GhcTc -> ExpectedFunTyOrigin
forall (p :: Pass).
OutputableBndrId p =>
TypedThing -> HsExpr (GhcPass p) -> ExpectedFunTyOrigin
ExpectedFunTyArg TypedThing
thing (XLitE GhcTc -> HsLit GhcTc -> HsExpr GhcTc
forall p. XLitE p -> HsLit p -> HsExpr p
HsLit XLitE GhcTc
EpAnn NoEpAnns
forall a. EpAnn a
noAnn HsLit GhcTc
hs_lit)
       ; (HsWrapper
wrap2, Scaled TcSigmaType
sarg_ty, TcSigmaType
res_ty) <- ExpectedFunTyOrigin
-> Maybe TypedThing
-> (ThLevel, [Scaled TcSigmaType])
-> TcSigmaType
-> TcM (HsWrapper, Scaled TcSigmaType, TcSigmaType)
matchActualFunTySigma ExpectedFunTyOrigin
herald Maybe TypedThing
mb_thing
                                                           (ThLevel
1, []) TcSigmaType
from_ty

       ; Coercion
co <- Maybe TypedThing -> TcSigmaType -> TcSigmaType -> TcM Coercion
unifyType Maybe TypedThing
mb_thing (HsLit GhcTc -> TcSigmaType
forall (p :: Pass). HsLit (GhcPass p) -> TcSigmaType
hsLitType HsLit GhcTc
hs_lit) (Scaled TcSigmaType -> TcSigmaType
forall a. Scaled a -> a
scaledThing Scaled TcSigmaType
sarg_ty)
       ; let lit_expr :: GenLocated SrcSpanAnnA (HsExpr GhcTc)
lit_expr = SrcSpanAnnA
-> HsExpr GhcTc -> GenLocated SrcSpanAnnA (HsExpr GhcTc)
forall l e. l -> e -> GenLocated l e
L (SrcAnn NameAnn -> SrcSpanAnnA
forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l SrcAnn NameAnn
loc) (HsExpr GhcTc -> GenLocated SrcSpanAnnA (HsExpr GhcTc))
-> HsExpr GhcTc -> GenLocated SrcSpanAnnA (HsExpr GhcTc)
forall a b. (a -> b) -> a -> b
$ Coercion -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrapCo Coercion
co (HsExpr GhcTc -> HsExpr GhcTc) -> HsExpr GhcTc -> HsExpr GhcTc
forall a b. (a -> b) -> a -> b
$
                        XLitE GhcTc -> HsLit GhcTc -> HsExpr GhcTc
forall p. XLitE p -> HsLit p -> HsExpr p
HsLit XLitE GhcTc
EpAnn NoEpAnns
forall a. EpAnn a
noAnn HsLit GhcTc
hs_lit
             from_expr :: HsExpr GhcTc
from_expr = HsWrapper -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrap (HsWrapper
wrap2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap1) (HsExpr GhcTc -> HsExpr GhcTc) -> HsExpr GhcTc -> HsExpr GhcTc
forall a b. (a -> b) -> a -> b
$
                         XVar GhcTc -> LIdP GhcTc -> HsExpr GhcTc
forall p. XVar p -> LIdP p -> HsExpr p
HsVar XVar GhcTc
NoExtField
noExtField (SrcAnn NameAnn -> Id -> GenLocated (SrcAnn NameAnn) Id
forall l e. l -> e -> GenLocated l e
L SrcAnn NameAnn
loc Id
from_id)
             witness :: HsExpr GhcTc
witness = XApp GhcTc -> LHsExpr GhcTc -> LHsExpr GhcTc -> HsExpr GhcTc
forall p. XApp p -> LHsExpr p -> LHsExpr p -> HsExpr p
HsApp XApp GhcTc
EpAnn NoEpAnns
forall a. EpAnn a
noAnn (SrcSpanAnnA
-> HsExpr GhcTc -> GenLocated SrcSpanAnnA (HsExpr GhcTc)
forall l e. l -> e -> GenLocated l e
L (SrcAnn NameAnn -> SrcSpanAnnA
forall a ann. SrcSpanAnn' a -> SrcAnn ann
l2l SrcAnn NameAnn
loc) HsExpr GhcTc
from_expr) LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
lit_expr
             lit' :: HsOverLit GhcTc
lit' = HsOverLit (GhcPass 'Renamed)
lit { ol_ext :: XOverLit GhcTc
ol_ext = OverLitTc { $sel:ol_rebindable:OverLitTc :: Bool
ol_rebindable = Bool
rebindable
                                             , $sel:ol_witness:OverLitTc :: HsExpr GhcTc
ol_witness = HsExpr GhcTc
witness
                                             , $sel:ol_type:OverLitTc :: TcSigmaType
ol_type = TcSigmaType
res_ty } }
       ; (HsExpr GhcTc, TcSigmaType) -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (XOverLitE GhcTc -> HsOverLit GhcTc -> HsExpr GhcTc
forall p. XOverLitE p -> HsOverLit p -> HsExpr p
HsOverLit XOverLitE GhcTc
EpAnn NoEpAnns
forall a. EpAnn a
noAnn HsOverLit GhcTc
lit', TcSigmaType
res_ty) }

{- *********************************************************************
*                                                                      *
                 tcInferId, tcCheckId
*                                                                      *
********************************************************************* -}

tcCheckId :: Name -> ExpRhoType -> TcM (HsExpr GhcTc)
tcCheckId :: Name -> ExpRhoType -> TcM (HsExpr GhcTc)
tcCheckId Name
name ExpRhoType
res_ty
  = do { (HsExpr GhcTc
expr, TcSigmaType
actual_res_ty) <- Name -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferId Name
name
       ; String -> SDoc -> TcM ()
traceTc String
"tcCheckId" ([SDoc] -> SDoc
vcat [Name -> SDoc
forall a. Outputable a => a -> SDoc
ppr Name
name, TcSigmaType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcSigmaType
actual_res_ty, ExpRhoType -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExpRhoType
res_ty])
       ; HsExpr (GhcPass 'Renamed)
-> [HsExprArg 'TcpRn]
-> TcSigmaType
-> ExpRhoType
-> TcM (HsExpr GhcTc)
-> TcM (HsExpr GhcTc)
forall a.
HsExpr (GhcPass 'Renamed)
-> [HsExprArg 'TcpRn]
-> TcSigmaType
-> ExpRhoType
-> TcM a
-> TcM a
addFunResCtxt HsExpr (GhcPass 'Renamed)
rn_fun [] TcSigmaType
actual_res_ty ExpRhoType
res_ty (TcM (HsExpr GhcTc) -> TcM (HsExpr GhcTc))
-> TcM (HsExpr GhcTc) -> TcM (HsExpr GhcTc)
forall a b. (a -> b) -> a -> b
$
         CtOrigin
-> HsExpr (GhcPass 'Renamed)
-> HsExpr GhcTc
-> TcSigmaType
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO (Name -> CtOrigin
OccurrenceOf Name
name) HsExpr (GhcPass 'Renamed)
rn_fun HsExpr GhcTc
expr TcSigmaType
actual_res_ty ExpRhoType
res_ty }
  where
    rn_fun :: HsExpr (GhcPass 'Renamed)
rn_fun = XVar (GhcPass 'Renamed)
-> LIdP (GhcPass 'Renamed) -> HsExpr (GhcPass 'Renamed)
forall p. XVar p -> LIdP p -> HsExpr p
HsVar XVar (GhcPass 'Renamed)
NoExtField
noExtField (Name -> GenLocated (SrcAnn NameAnn) Name
forall a an. a -> LocatedAn an a
noLocA Name
name)

------------------------
tcInferId :: Name -> TcM (HsExpr GhcTc, TcSigmaType)
-- Look up an occurrence of an Id
-- Do not instantiate its type
tcInferId :: Name -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferId Name
id_name
  | Name
id_name Name -> Unique -> Bool
forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
assertIdKey
  = do { DynFlags
dflags <- IOEnv (Env TcGblEnv TcLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; if GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_IgnoreAsserts DynFlags
dflags
         then Name -> TcM (HsExpr GhcTc, TcSigmaType)
tc_infer_id Name
id_name
         else Name -> TcM (HsExpr GhcTc, TcSigmaType)
tc_infer_assert Name
id_name }

  | Bool
otherwise
  = do { (HsExpr GhcTc
expr, TcSigmaType
ty) <- Name -> TcM (HsExpr GhcTc, TcSigmaType)
tc_infer_id Name
id_name
       ; String -> SDoc -> TcM ()
traceTc String
"tcInferId" (Name -> SDoc
forall a. Outputable a => a -> SDoc
ppr Name
id_name SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> TcSigmaType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcSigmaType
ty)
       ; (HsExpr GhcTc, TcSigmaType) -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsExpr GhcTc
expr, TcSigmaType
ty) }

tc_infer_assert :: Name -> TcM (HsExpr GhcTc, TcSigmaType)
-- Deal with an occurrence of 'assert'
-- See Note [Adding the implicit parameter to 'assert']
tc_infer_assert :: Name -> TcM (HsExpr GhcTc, TcSigmaType)
tc_infer_assert Name
assert_name
  = do { Id
assert_error_id <- Name -> TcM Id
tcLookupId Name
assertErrorName
       ; (HsWrapper
wrap, TcSigmaType
id_rho) <- CtOrigin -> TcSigmaType -> TcM (HsWrapper, TcSigmaType)
topInstantiate (Name -> CtOrigin
OccurrenceOf Name
assert_name)
                                          (Id -> TcSigmaType
idType Id
assert_error_id)
       ; (HsExpr GhcTc, TcSigmaType) -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrap HsWrapper
wrap (XVar GhcTc -> LIdP GhcTc -> HsExpr GhcTc
forall p. XVar p -> LIdP p -> HsExpr p
HsVar XVar GhcTc
NoExtField
noExtField (Id -> GenLocated (SrcAnn NameAnn) Id
forall a an. a -> LocatedAn an a
noLocA Id
assert_error_id)), TcSigmaType
id_rho)
       }

tc_infer_id :: Name -> TcM (HsExpr GhcTc, TcSigmaType)
tc_infer_id :: Name -> TcM (HsExpr GhcTc, TcSigmaType)
tc_infer_id Name
id_name
 = do { TcTyThing
thing <- Name -> TcM TcTyThing
tcLookup Name
id_name
      ; case TcTyThing
thing of
             ATcId { tct_id :: TcTyThing -> Id
tct_id = Id
id }
               -> do { Id -> TcM ()
check_local_id Id
id
                     ; Id -> TcM (HsExpr GhcTc, TcSigmaType)
forall {p} {an} {m :: * -> *}.
(IdP p ~ Id, XVar p ~ NoExtField,
 XRec p Id ~ GenLocated (SrcAnn an) Id, Monad m) =>
Id -> m (HsExpr p, TcSigmaType)
return_id Id
id }

             AGlobal (AnId Id
id) -> Id -> TcM (HsExpr GhcTc, TcSigmaType)
forall {p} {an} {m :: * -> *}.
(IdP p ~ Id, XVar p ~ NoExtField,
 XRec p Id ~ GenLocated (SrcAnn an) Id, Monad m) =>
Id -> m (HsExpr p, TcSigmaType)
return_id Id
id
               -- A global cannot possibly be ill-staged
               -- nor does it need the 'lifting' treatment
               -- Hence no checkTh stuff here

             AGlobal (AConLike (RealDataCon DataCon
con)) -> DataCon -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferDataCon DataCon
con
             AGlobal (AConLike (PatSynCon PatSyn
ps)) -> Name -> PatSyn -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferPatSyn Name
id_name PatSyn
ps
             (TcTyThing -> Maybe TyCon
tcTyThingTyCon_maybe -> Just TyCon
tc) -> TyCon -> TcM (HsExpr GhcTc, TcSigmaType)
fail_tycon TyCon
tc -- TyCon or TcTyCon
             ATyVar Name
name Id
_ -> Name -> TcM (HsExpr GhcTc, TcSigmaType)
fail_tyvar Name
name

             TcTyThing
_ -> TcRnMessage -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. TcRnMessage -> TcM a
failWithTc (TcRnMessage -> TcM (HsExpr GhcTc, TcSigmaType))
-> TcRnMessage -> TcM (HsExpr GhcTc, TcSigmaType)
forall a b. (a -> b) -> a -> b
$ DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints (SDoc -> DiagnosticMessage) -> SDoc -> DiagnosticMessage
forall a b. (a -> b) -> a -> b
$
                  TcTyThing -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyThing
thing SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"used where a value identifier was expected" }
  where
    fail_tycon :: TyCon -> TcM (HsExpr GhcTc, TcSigmaType)
fail_tycon TyCon
tc = do
      GlobalRdrEnv
gre <- TcRn GlobalRdrEnv
getGlobalRdrEnv
      let nm :: Name
nm = TyCon -> Name
tyConName TyCon
tc
          pprov :: SDoc
pprov = case GlobalRdrEnv -> Name -> Maybe GlobalRdrElt
lookupGRE_Name GlobalRdrEnv
gre Name
nm of
                      Just GlobalRdrElt
gre -> ThLevel -> SDoc -> SDoc
nest ThLevel
2 (GlobalRdrElt -> SDoc
pprNameProvenance GlobalRdrElt
gre)
                      Maybe GlobalRdrElt
Nothing  -> SDoc
empty
      NameSpace -> Name -> SDoc -> TcM (HsExpr GhcTc, TcSigmaType)
fail_with_msg NameSpace
dataName Name
nm SDoc
pprov

    fail_tyvar :: Name -> TcM (HsExpr GhcTc, TcSigmaType)
fail_tyvar Name
nm =
      let pprov :: SDoc
pprov = ThLevel -> SDoc -> SDoc
nest ThLevel
2 (String -> SDoc
text String
"bound at" SDoc -> SDoc -> SDoc
<+> SrcLoc -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Name -> SrcLoc
forall a. NamedThing a => a -> SrcLoc
getSrcLoc Name
nm))
      in NameSpace -> Name -> SDoc -> TcM (HsExpr GhcTc, TcSigmaType)
fail_with_msg NameSpace
varName Name
nm SDoc
pprov

    fail_with_msg :: NameSpace -> Name -> SDoc -> TcM (HsExpr GhcTc, TcSigmaType)
fail_with_msg NameSpace
whatName Name
nm SDoc
pprov = do
      ([ImportError]
import_errs, [GhcHint]
hints) <- NameSpace
-> IOEnv (Env TcGblEnv TcLclEnv) ([ImportError], [GhcHint])
get_suggestions NameSpace
whatName
      UnitState
unit_state <- (() :: Constraint) => HscEnv -> UnitState
HscEnv -> UnitState
hsc_units (HscEnv -> UnitState)
-> IOEnv (Env TcGblEnv TcLclEnv) HscEnv
-> IOEnv (Env TcGblEnv TcLclEnv) UnitState
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> IOEnv (Env TcGblEnv TcLclEnv) HscEnv
forall gbl lcl. TcRnIf gbl lcl HscEnv
getTopEnv
      let
        -- TODO: unfortunate to have to convert to SDoc here.
        -- This should go away once we refactor ErrInfo.
        hint_msg :: SDoc
hint_msg = [SDoc] -> SDoc
vcat ([SDoc] -> SDoc) -> [SDoc] -> SDoc
forall a b. (a -> b) -> a -> b
$ (GhcHint -> SDoc) -> [GhcHint] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map GhcHint -> SDoc
forall a. Outputable a => a -> SDoc
ppr [GhcHint]
hints
        import_err_msg :: SDoc
import_err_msg = [SDoc] -> SDoc
vcat ([SDoc] -> SDoc) -> [SDoc] -> SDoc
forall a b. (a -> b) -> a -> b
$ (ImportError -> SDoc) -> [ImportError] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map ImportError -> SDoc
forall a. Outputable a => a -> SDoc
ppr [ImportError]
import_errs
        info :: ErrInfo
info = ErrInfo { errInfoContext :: SDoc
errInfoContext = SDoc
pprov, errInfoSupplementary :: SDoc
errInfoSupplementary = SDoc
import_err_msg SDoc -> SDoc -> SDoc
$$ SDoc
hint_msg }
        msg :: TcRnMessage
msg = UnitState -> TcRnMessageDetailed -> TcRnMessage
TcRnMessageWithInfo UnitState
unit_state
            (TcRnMessageDetailed -> TcRnMessage)
-> TcRnMessageDetailed -> TcRnMessage
forall a b. (a -> b) -> a -> b
$ ErrInfo -> TcRnMessage -> TcRnMessageDetailed
TcRnMessageDetailed ErrInfo
info (Name -> Bool -> TcRnMessage
TcRnIncorrectNameSpace Name
nm Bool
False)
      TcRnMessage -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. TcRnMessage -> TcM a
failWithTc TcRnMessage
msg

    get_suggestions :: NameSpace
-> IOEnv (Env TcGblEnv TcLclEnv) ([ImportError], [GhcHint])
get_suggestions NameSpace
ns = do
       let occ :: OccName
occ = NameSpace -> FastString -> OccName
mkOccNameFS NameSpace
ns (OccName -> FastString
occNameFS (Name -> OccName
forall name. HasOccName name => name -> OccName
occName Name
id_name))
       DynFlags
dflags  <- IOEnv (Env TcGblEnv TcLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       GlobalRdrEnv
rdr_env <- TcRn GlobalRdrEnv
getGlobalRdrEnv
       LocalRdrEnv
lcl_env <- RnM LocalRdrEnv
getLocalRdrEnv
       ImportAvails
imp_info <- TcRn ImportAvails
getImports
       Module
curr_mod <- IOEnv (Env TcGblEnv TcLclEnv) Module
forall (m :: * -> *). HasModule m => m Module
getModule
       HomePackageTable
hpt <- TcRnIf TcGblEnv TcLclEnv HomePackageTable
forall gbl lcl. TcRnIf gbl lcl HomePackageTable
getHpt
       ([ImportError], [GhcHint])
-> IOEnv (Env TcGblEnv TcLclEnv) ([ImportError], [GhcHint])
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (([ImportError], [GhcHint])
 -> IOEnv (Env TcGblEnv TcLclEnv) ([ImportError], [GhcHint]))
-> ([ImportError], [GhcHint])
-> IOEnv (Env TcGblEnv TcLclEnv) ([ImportError], [GhcHint])
forall a b. (a -> b) -> a -> b
$ WhatLooking
-> DynFlags
-> HomePackageTable
-> Module
-> GlobalRdrEnv
-> LocalRdrEnv
-> ImportAvails
-> RdrName
-> ([ImportError], [GhcHint])
unknownNameSuggestions WhatLooking
WL_Anything DynFlags
dflags HomePackageTable
hpt Module
curr_mod GlobalRdrEnv
rdr_env
         LocalRdrEnv
lcl_env ImportAvails
imp_info (OccName -> RdrName
mkRdrUnqual OccName
occ)

    return_id :: Id -> m (HsExpr p, TcSigmaType)
return_id Id
id = (HsExpr p, TcSigmaType) -> m (HsExpr p, TcSigmaType)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (XVar p -> LIdP p -> HsExpr p
forall p. XVar p -> LIdP p -> HsExpr p
HsVar XVar p
NoExtField
noExtField (Id -> GenLocated (SrcAnn an) Id
forall a an. a -> LocatedAn an a
noLocA Id
id), Id -> TcSigmaType
idType Id
id)

check_local_id :: Id -> TcM ()
check_local_id :: Id -> TcM ()
check_local_id Id
id
  = do { Id -> TcM ()
checkThLocalId Id
id
       ; UsageEnv -> TcM ()
tcEmitBindingUsage (UsageEnv -> TcM ()) -> UsageEnv -> TcM ()
forall a b. (a -> b) -> a -> b
$ Name -> TcSigmaType -> UsageEnv
forall n. NamedThing n => n -> TcSigmaType -> UsageEnv
unitUE (Id -> Name
idName Id
id) TcSigmaType
One }

check_naughty :: OccName -> TcId -> TcM ()
check_naughty :: OccName -> Id -> TcM ()
check_naughty OccName
lbl Id
id
  | Id -> Bool
isNaughtyRecordSelector Id
id = TcRnMessage -> TcM ()
forall a. TcRnMessage -> TcM a
failWithTc (OccName -> TcRnMessage
naughtyRecordSel OccName
lbl)
  | Bool
otherwise                  = () -> TcM ()
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ()

tcInferDataCon :: DataCon -> TcM (HsExpr GhcTc, TcSigmaType)
-- See Note [Typechecking data constructors]
tcInferDataCon :: DataCon -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferDataCon DataCon
con
  = do { let tvbs :: [InvisTVBinder]
tvbs  = DataCon -> [InvisTVBinder]
dataConUserTyVarBinders DataCon
con
             tvs :: [Id]
tvs   = [InvisTVBinder] -> [Id]
forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [InvisTVBinder]
tvbs
             theta :: [TcSigmaType]
theta = DataCon -> [TcSigmaType]
dataConOtherTheta DataCon
con
             args :: [Scaled TcSigmaType]
args  = DataCon -> [Scaled TcSigmaType]
dataConOrigArgTys DataCon
con
             res :: TcSigmaType
res   = DataCon -> TcSigmaType
dataConOrigResTy DataCon
con
             stupid_theta :: [TcSigmaType]
stupid_theta = DataCon -> [TcSigmaType]
dataConStupidTheta DataCon
con

       ; [Scaled TcSigmaType]
scaled_arg_tys <- (Scaled TcSigmaType
 -> IOEnv (Env TcGblEnv TcLclEnv) (Scaled TcSigmaType))
-> [Scaled TcSigmaType]
-> IOEnv (Env TcGblEnv TcLclEnv) [Scaled TcSigmaType]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Scaled TcSigmaType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled TcSigmaType)
linear_to_poly [Scaled TcSigmaType]
args

       ; let full_theta :: [TcSigmaType]
full_theta  = [TcSigmaType]
stupid_theta [TcSigmaType] -> [TcSigmaType] -> [TcSigmaType]
forall a. [a] -> [a] -> [a]
++ [TcSigmaType]
theta
             all_arg_tys :: [Scaled TcSigmaType]
all_arg_tys = (TcSigmaType -> Scaled TcSigmaType)
-> [TcSigmaType] -> [Scaled TcSigmaType]
forall a b. (a -> b) -> [a] -> [b]
map TcSigmaType -> Scaled TcSigmaType
forall a. a -> Scaled a
unrestricted [TcSigmaType]
full_theta [Scaled TcSigmaType]
-> [Scaled TcSigmaType] -> [Scaled TcSigmaType]
forall a. [a] -> [a] -> [a]
++ [Scaled TcSigmaType]
scaled_arg_tys
                -- stupid-theta must come first
                -- See Note [Instantiating stupid theta]

       ; (HsExpr GhcTc, TcSigmaType) -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ( XXExpr GhcTc -> HsExpr GhcTc
forall p. XXExpr p -> HsExpr p
XExpr (ConLike -> [Id] -> [Scaled TcSigmaType] -> XXExprGhcTc
ConLikeTc (DataCon -> ConLike
RealDataCon DataCon
con) [Id]
tvs [Scaled TcSigmaType]
all_arg_tys)
                , [InvisTVBinder] -> TcSigmaType -> TcSigmaType
mkInvisForAllTys [InvisTVBinder]
tvbs (TcSigmaType -> TcSigmaType) -> TcSigmaType -> TcSigmaType
forall a b. (a -> b) -> a -> b
$ [TcSigmaType] -> TcSigmaType -> TcSigmaType
mkPhiTy [TcSigmaType]
full_theta (TcSigmaType -> TcSigmaType) -> TcSigmaType -> TcSigmaType
forall a b. (a -> b) -> a -> b
$
                  [Scaled TcSigmaType] -> TcSigmaType -> TcSigmaType
mkVisFunTys [Scaled TcSigmaType]
scaled_arg_tys TcSigmaType
res ) }
  where
    linear_to_poly :: Scaled Type -> TcM (Scaled Type)
    -- linear_to_poly implements point (3,4)
    -- of Note [Typechecking data constructors]
    linear_to_poly :: Scaled TcSigmaType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled TcSigmaType)
linear_to_poly (Scaled TcSigmaType
One TcSigmaType
ty) = do { TcSigmaType
mul_var <- TcSigmaType -> TcM TcSigmaType
newFlexiTyVarTy TcSigmaType
multiplicityTy
                                        ; Scaled TcSigmaType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (TcSigmaType -> TcSigmaType -> Scaled TcSigmaType
forall a. TcSigmaType -> a -> Scaled a
Scaled TcSigmaType
mul_var TcSigmaType
ty) }
    linear_to_poly Scaled TcSigmaType
scaled_ty       = Scaled TcSigmaType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Scaled TcSigmaType
scaled_ty

tcInferPatSyn :: Name -> PatSyn -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferPatSyn :: Name -> PatSyn -> TcM (HsExpr GhcTc, TcSigmaType)
tcInferPatSyn Name
id_name PatSyn
ps
  = case PatSyn -> Maybe (HsExpr GhcTc, TcSigmaType)
patSynBuilderOcc PatSyn
ps of
       Just (HsExpr GhcTc
expr,TcSigmaType
ty) -> (HsExpr GhcTc, TcSigmaType) -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsExpr GhcTc
expr,TcSigmaType
ty)
       Maybe (HsExpr GhcTc, TcSigmaType)
Nothing        -> TcRnMessage -> TcM (HsExpr GhcTc, TcSigmaType)
forall a. TcRnMessage -> TcM a
failWithTc (Name -> TcRnMessage
forall name. Outputable name => name -> TcRnMessage
nonBidirectionalErr Name
id_name)

nonBidirectionalErr :: Outputable name => name -> TcRnMessage
nonBidirectionalErr :: forall name. Outputable name => name -> TcRnMessage
nonBidirectionalErr name
name = DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints (SDoc -> DiagnosticMessage) -> SDoc -> DiagnosticMessage
forall a b. (a -> b) -> a -> b
$
  String -> SDoc
text String
"non-bidirectional pattern synonym"
  SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (name -> SDoc
forall a. Outputable a => a -> SDoc
ppr name
name) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"used in an expression"

{- Note [Typechecking data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As per Note [Polymorphisation of linear fields] in
GHC.Core.Multiplicity, linear fields of data constructors get a
polymorphic multiplicity when the data constructor is used as a term:

    Just :: forall {p} a. a %p -> Maybe a

So at an occurrence of a data constructor we do the following,
mostly in tcInferDataCon:

1. Get its type, say
    K :: forall (r :: RuntimeRep) (a :: TYPE r). a %1 -> T r a
   Note the %1: it is linear

2. We are going to return a ConLikeTc, thus:
     XExpr (ConLikeTc K [r,a] [Scaled p a])
      :: forall (r :: RuntimeRep) (a :: TYPE r). a %p -> T r a
   where 'p' is a fresh multiplicity unification variable.

   To get the returned ConLikeTc, we allocate a fresh multiplicity
   variable for each linear argument, and store the type, scaled by
   the fresh multiplicity variable in the ConLikeTc; along with
   the type of the ConLikeTc. This is done by linear_to_poly.

3. If the argument is not linear (perhaps explicitly declared as
   non-linear by the user), don't bother with this.

4. The (ConLikeTc K [r,a] [Scaled p a]) is later desugared by
   GHC.HsToCore.Expr.dsConLike to:
     (/\r (a :: TYPE r). \(x %p :: a). K @r @a x)
   which has the desired type given in the previous bullet.
   The 'p' is the multiplicity unification variable, which
   will by now have been unified to something, or defaulted in
   `GHC.Tc.Utils.Zonk.commitFlexi`. So it won't just be an
   (unbound) variable.

Wrinkles

* Note that the [TcType] is strictly redundant anyway; those are the
  type variables from the dataConUserTyVarBinders of the data constructor.
  Similarly in the [Scaled TcType] field of ConLikeTc, the types come directly
  from the data constructor.  The only bit that /isn't/ redundant is the
  fresh multiplicity variables!

  So an alternative would be to define ConLikeTc like this:
      | ConLikeTc [TcType]    -- Just the multiplicity variables
  But then the desugarer would need to repeat some of the work done here.
  So for now at least ConLikeTc records this strictly-redundant info.

* The lambda expression we produce in (4) can have representation-polymorphic
  arguments, as indeed in (/\r (a :: TYPE r). \(x %p :: a). K @r @a x),
  we have a lambda-bound variable x :: (a :: TYPE r).
  This goes against the representation polymorphism invariants given in
  Note [Representation polymorphism invariants] in GHC.Core. The trick is that
  this this lambda will always be instantiated in a way that upholds the invariants.
  This is achieved as follows:

    A. Any arguments to such lambda abstractions are guaranteed to have
       a fixed runtime representation. This is enforced in 'tcApp' by
       'matchActualFunTySigma'.

    B. If there are fewer arguments than there are bound term variables,
       hasFixedRuntimeRep_remainingValArgs will ensure that we are still
       instantiating at a representation-monomorphic type, e.g.

       ( /\r (a :: TYPE r). \ (x %p :: a). K @r @a x) @IntRep @Int#
         :: Int# -> T IntRep Int#

  We then rely on the simple optimiser to beta reduce the lambda.

* See Note [Instantiating stupid theta] for an extra wrinkle


Note [Adding the implicit parameter to 'assert']
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The typechecker transforms (assert e1 e2) to (assertError e1 e2).
This isn't really the Right Thing because there's no way to "undo"
if you want to see the original source code in the typechecker
output.  We'll have fix this in due course, when we care more about
being able to reconstruct the exact original program.


Note [Instantiating stupid theta]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a data type with a "stupid theta" (see
Note [The stupid context] in GHC.Core.DataCon):

  data Ord a => T a = MkT (Maybe a)

We want to generate an Ord constraint for every use of MkT; but
we also want to allow visible type application, such as
   MkT @Int

So we generate (ConLikeTc MkT [a] [Ord a, Maybe a]), with type
   forall a. Ord a => Maybe a -> T a

Now visible type application will work fine. But we desugar the
ConLikeTc to
   /\a \(d:Ord a) (x:Maybe a). MkT x
Notice that 'd' is dropped in this desugaring. We don't need it;
it was only there to generate a Wanted constraint. (That is why
it is stupid.)  To achieve this:

* We put the stupid-thata at the front of the list of argument
  types in ConLikeTc

* GHC.HsToCore.Expr.dsConLike generates /lambdas/ for all the
  arguments, but drops the stupid-theta arguments when building the
  /application/.

Nice.
-}

{-
************************************************************************
*                                                                      *
                 Template Haskell checks
*                                                                      *
************************************************************************
-}

checkThLocalId :: Id -> TcM ()
-- The renamer has already done checkWellStaged,
--   in RnSplice.checkThLocalName, so don't repeat that here.
-- Here we just add constraints for cross-stage lifting
checkThLocalId :: Id -> TcM ()
checkThLocalId Id
id
  = do  { Maybe (TopLevelFlag, ThLevel, ThStage)
mb_local_use <- Name -> TcRn (Maybe (TopLevelFlag, ThLevel, ThStage))
getStageAndBindLevel (Id -> Name
idName Id
id)
        ; case Maybe (TopLevelFlag, ThLevel, ThStage)
mb_local_use of
             Just (TopLevelFlag
top_lvl, ThLevel
bind_lvl, ThStage
use_stage)
                | ThStage -> ThLevel
thLevel ThStage
use_stage ThLevel -> ThLevel -> Bool
forall a. Ord a => a -> a -> Bool
> ThLevel
bind_lvl
                -> TopLevelFlag -> Id -> ThStage -> TcM ()
checkCrossStageLifting TopLevelFlag
top_lvl Id
id ThStage
use_stage
             Maybe (TopLevelFlag, ThLevel, ThStage)
_  -> () -> TcM ()
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ()   -- Not a locally-bound thing, or
                               -- no cross-stage link
    }

--------------------------------------
checkCrossStageLifting :: TopLevelFlag -> Id -> ThStage -> TcM ()
-- If we are inside typed brackets, and (use_lvl > bind_lvl)
-- we must check whether there's a cross-stage lift to do
-- Examples   \x -> [|| x ||]
--            [|| map ||]
--
-- This is similar to checkCrossStageLifting in GHC.Rename.Splice, but
-- this code is applied to *typed* brackets.

checkCrossStageLifting :: TopLevelFlag -> Id -> ThStage -> TcM ()
checkCrossStageLifting TopLevelFlag
top_lvl Id
id (Brack ThStage
_ (TcPending TcRef [PendingTcSplice]
ps_var TcRef WantedConstraints
lie_var QuoteWrapper
q))
  | TopLevelFlag -> Bool
isTopLevel TopLevelFlag
top_lvl
  = Bool -> TcM () -> TcM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Name -> Bool
isExternalName Name
id_name) (Name -> TcM ()
keepAlive Name
id_name)
    -- See Note [Keeping things alive for Template Haskell] in GHC.Rename.Splice

  | Bool
otherwise
  =     -- Nested identifiers, such as 'x' in
        -- E.g. \x -> [|| h x ||]
        -- We must behave as if the reference to x was
        --      h $(lift x)
        -- We use 'x' itself as the splice proxy, used by
        -- the desugarer to stitch it all back together.
        -- If 'x' occurs many times we may get many identical
        -- bindings of the same splice proxy, but that doesn't
        -- matter, although it's a mite untidy.
    do  { let id_ty :: TcSigmaType
id_ty = Id -> TcSigmaType
idType Id
id
        ; Bool -> TcRnMessage -> TcM ()
checkTc (TcSigmaType -> Bool
isTauTy TcSigmaType
id_ty) (Id -> TcRnMessage
polySpliceErr Id
id)
               -- If x is polymorphic, its occurrence sites might
               -- have different instantiations, so we can't use plain
               -- 'x' as the splice proxy name.  I don't know how to
               -- solve this, and it's probably unimportant, so I'm
               -- just going to flag an error for now

        ; HsExpr GhcTc
lift <- if TcSigmaType -> Bool
isStringTy TcSigmaType
id_ty then
                     do { Id
sid <- Name -> TcM Id
tcLookupId Name
GHC.Builtin.Names.TH.liftStringName
                                     -- See Note [Lifting strings]
                        ; HsExpr GhcTc -> TcM (HsExpr GhcTc)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (XVar GhcTc -> LIdP GhcTc -> HsExpr GhcTc
forall p. XVar p -> LIdP p -> HsExpr p
HsVar XVar GhcTc
NoExtField
noExtField (Id -> GenLocated (SrcAnn NameAnn) Id
forall a an. a -> LocatedAn an a
noLocA Id
sid)) }
                  else
                     TcRef WantedConstraints -> TcM (HsExpr GhcTc) -> TcM (HsExpr GhcTc)
forall a. TcRef WantedConstraints -> TcM a -> TcM a
setConstraintVar TcRef WantedConstraints
lie_var   (TcM (HsExpr GhcTc) -> TcM (HsExpr GhcTc))
-> TcM (HsExpr GhcTc) -> TcM (HsExpr GhcTc)
forall a b. (a -> b) -> a -> b
$
                          -- Put the 'lift' constraint into the right LIE
                     CtOrigin -> Name -> [TcSigmaType] -> TcM (HsExpr GhcTc)
newMethodFromName (Name -> CtOrigin
OccurrenceOf Name
id_name)
                                       Name
GHC.Builtin.Names.TH.liftName
                                       [(() :: Constraint) => TcSigmaType -> TcSigmaType
TcSigmaType -> TcSigmaType
getRuntimeRep TcSigmaType
id_ty, TcSigmaType
id_ty]

                   -- Warning for implicit lift (#17804)
        ; (ErrInfo -> TcRnMessage) -> TcM ()
addDetailedDiagnostic (Id -> ErrInfo -> TcRnMessage
forall var. Outputable var => var -> ErrInfo -> TcRnMessage
TcRnImplicitLift Id
id)

                   -- Update the pending splices
        ; [PendingTcSplice]
ps <- TcRef [PendingTcSplice]
-> IOEnv (Env TcGblEnv TcLclEnv) [PendingTcSplice]
forall a env. IORef a -> IOEnv env a
readMutVar TcRef [PendingTcSplice]
ps_var
        ; let pending_splice :: PendingTcSplice
pending_splice = Name -> LHsExpr GhcTc -> PendingTcSplice
PendingTcSplice Name
id_name
                                 (LHsExpr GhcTc -> LHsExpr GhcTc -> LHsExpr GhcTc
forall (id :: Pass).
IsPass id =>
LHsExpr (GhcPass id)
-> LHsExpr (GhcPass id) -> LHsExpr (GhcPass id)
nlHsApp (HsWrapper -> LHsExpr GhcTc -> LHsExpr GhcTc
mkLHsWrap (QuoteWrapper -> HsWrapper
applyQuoteWrapper QuoteWrapper
q) (HsExpr GhcTc -> GenLocated SrcSpanAnnA (HsExpr GhcTc)
forall a an. a -> LocatedAn an a
noLocA HsExpr GhcTc
lift))
                                          (IdP GhcTc -> LHsExpr GhcTc
forall (p :: Pass) a.
IsSrcSpanAnn p a =>
IdP (GhcPass p) -> LHsExpr (GhcPass p)
nlHsVar IdP GhcTc
Id
id))
        ; TcRef [PendingTcSplice] -> [PendingTcSplice] -> TcM ()
forall a env. IORef a -> a -> IOEnv env ()
writeMutVar TcRef [PendingTcSplice]
ps_var (PendingTcSplice
pending_splice PendingTcSplice -> [PendingTcSplice] -> [PendingTcSplice]
forall a. a -> [a] -> [a]
: [PendingTcSplice]
ps)

        ; () -> TcM ()
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return () }
  where
    id_name :: Name
id_name = Id -> Name
idName Id
id

checkCrossStageLifting TopLevelFlag
_ Id
_ ThStage
_ = () -> TcM ()
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ()

polySpliceErr :: Id -> TcRnMessage
polySpliceErr :: Id -> TcRnMessage
polySpliceErr Id
id
  = DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$ [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainError [GhcHint]
noHints (SDoc -> DiagnosticMessage) -> SDoc -> DiagnosticMessage
forall a b. (a -> b) -> a -> b
$
  String -> SDoc
text String
"Can't splice the polymorphic local variable" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (Id -> SDoc
forall a. Outputable a => a -> SDoc
ppr Id
id)

{-
Note [Lifting strings]
~~~~~~~~~~~~~~~~~~~~~~
If we see $(... [| s |] ...) where s::String, we don't want to
generate a mass of Cons (CharL 'x') (Cons (CharL 'y') ...)) etc.
So this conditional short-circuits the lifting mechanism to generate
(liftString "xy") in that case.  I didn't want to use overlapping instances
for the Lift class in TH.Syntax, because that can lead to overlapping-instance
errors in a polymorphic situation.

If this check fails (which isn't impossible) we get another chance; see
Note [Converting strings] in Convert.hs

Note [Local record selectors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Record selectors for TyCons in this module are ordinary local bindings,
which show up as ATcIds rather than AGlobals.  So we need to check for
naughtiness in both branches.  c.f. GHC.Tc.TyCl.Utils.mkRecSelBinds.
-}


{- *********************************************************************
*                                                                      *
         Error reporting for function result mis-matches
*                                                                      *
********************************************************************* -}

addFunResCtxt :: HsExpr GhcRn -> [HsExprArg 'TcpRn]
              -> TcType -> ExpRhoType
              -> TcM a -> TcM a
-- When we have a mis-match in the return type of a function
-- try to give a helpful message about too many/few arguments
-- But not in generated code, where we don't want
-- to mention internal (rebindable syntax) function names
addFunResCtxt :: forall a.
HsExpr (GhcPass 'Renamed)
-> [HsExprArg 'TcpRn]
-> TcSigmaType
-> ExpRhoType
-> TcM a
-> TcM a
addFunResCtxt HsExpr (GhcPass 'Renamed)
fun [HsExprArg 'TcpRn]
args TcSigmaType
fun_res_ty ExpRhoType
env_ty TcM a
thing_inside
  = (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addLandmarkErrCtxtM (\TidyEnv
env -> (TidyEnv
env, ) (SDoc -> (TidyEnv, SDoc))
-> IOEnv (Env TcGblEnv TcLclEnv) SDoc -> TcM (TidyEnv, SDoc)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> IOEnv (Env TcGblEnv TcLclEnv) SDoc
mk_msg) TcM a
thing_inside
      -- NB: use a landmark error context, so that an empty context
      -- doesn't suppress some more useful context
  where
    mk_msg :: IOEnv (Env TcGblEnv TcLclEnv) SDoc
mk_msg
      = do { Maybe TcSigmaType
mb_env_ty <- ExpRhoType -> TcM (Maybe TcSigmaType)
readExpType_maybe ExpRhoType
env_ty
                     -- by the time the message is rendered, the ExpType
                     -- will be filled in (except if we're debugging)
           ; TcSigmaType
fun_res' <- TcSigmaType -> TcM TcSigmaType
zonkTcType TcSigmaType
fun_res_ty
           ; TcSigmaType
env'     <- case Maybe TcSigmaType
mb_env_ty of
                           Just TcSigmaType
env_ty -> TcSigmaType -> TcM TcSigmaType
zonkTcType TcSigmaType
env_ty
                           Maybe TcSigmaType
Nothing     ->
                             do { Bool
dumping <- DumpFlag -> TcRnIf TcGblEnv TcLclEnv Bool
forall gbl lcl. DumpFlag -> TcRnIf gbl lcl Bool
doptM DumpFlag
Opt_D_dump_tc_trace
                                ; Bool -> TcM ()
forall (m :: * -> *). (HasCallStack, Applicative m) => Bool -> m ()
massert Bool
dumping
                                ; TcSigmaType -> TcM TcSigmaType
newFlexiTyVarTy TcSigmaType
liftedTypeKind }
           ; let -- See Note [Splitting nested sigma types in mismatched
                 --           function types]
                 ([Id]
_, [TcSigmaType]
_, TcSigmaType
fun_tau) = TcSigmaType -> ([Id], [TcSigmaType], TcSigmaType)
tcSplitNestedSigmaTys TcSigmaType
fun_res'
                 ([Id]
_, [TcSigmaType]
_, TcSigmaType
env_tau) = TcSigmaType -> ([Id], [TcSigmaType], TcSigmaType)
tcSplitNestedSigmaTys TcSigmaType
env'
                     -- env_ty is an ExpRhoTy, but with simple subsumption it
                     -- is not deeply skolemised, so still use tcSplitNestedSigmaTys
                 ([Scaled TcSigmaType]
args_fun, TcSigmaType
res_fun) = TcSigmaType -> ([Scaled TcSigmaType], TcSigmaType)
tcSplitFunTys TcSigmaType
fun_tau
                 ([Scaled TcSigmaType]
args_env, TcSigmaType
res_env) = TcSigmaType -> ([Scaled TcSigmaType], TcSigmaType)
tcSplitFunTys TcSigmaType
env_tau
                 n_fun :: ThLevel
n_fun = [Scaled TcSigmaType] -> ThLevel
forall a. [a] -> ThLevel
forall (t :: * -> *) a. Foldable t => t a -> ThLevel
length [Scaled TcSigmaType]
args_fun
                 n_env :: ThLevel
n_env = [Scaled TcSigmaType] -> ThLevel
forall a. [a] -> ThLevel
forall (t :: * -> *) a. Foldable t => t a -> ThLevel
length [Scaled TcSigmaType]
args_env
                 info :: SDoc
info  | -- Check for too few args
                         --  fun_tau = a -> b, res_tau = Int
                         ThLevel
n_fun ThLevel -> ThLevel -> Bool
forall a. Ord a => a -> a -> Bool
> ThLevel
n_env
                       , TcSigmaType -> Bool
not_fun TcSigmaType
res_env
                       = String -> SDoc
text String
"Probable cause:" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (HsExpr (GhcPass 'Renamed) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr (GhcPass 'Renamed)
fun)
                         SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"is applied to too few arguments"

                       | -- Check for too many args
                         -- fun_tau = a -> Int,   res_tau = a -> b -> c -> d
                         -- The final guard suppresses the message when there
                         -- aren't enough args to drop; eg. the call is (f e1)
                         ThLevel
n_fun ThLevel -> ThLevel -> Bool
forall a. Ord a => a -> a -> Bool
< ThLevel
n_env
                       , TcSigmaType -> Bool
not_fun TcSigmaType
res_fun
                       , (ThLevel
n_fun ThLevel -> ThLevel -> ThLevel
forall a. Num a => a -> a -> a
+ (HsExprArg 'TcpRn -> Bool) -> [HsExprArg 'TcpRn] -> ThLevel
forall a. (a -> Bool) -> [a] -> ThLevel
count HsExprArg 'TcpRn -> Bool
forall (id :: TcPass). HsExprArg id -> Bool
isValArg [HsExprArg 'TcpRn]
args) ThLevel -> ThLevel -> Bool
forall a. Ord a => a -> a -> Bool
>= ThLevel
n_env
                          -- Never suggest that a naked variable is
                                           -- applied to too many args!
                       = String -> SDoc
text String
"Possible cause:" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (HsExpr (GhcPass 'Renamed) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr (GhcPass 'Renamed)
fun)
                         SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"is applied to too many arguments"

                       | Bool
otherwise
                       = SDoc
Outputable.empty

           ; SDoc -> IOEnv (Env TcGblEnv TcLclEnv) SDoc
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return SDoc
info }

    not_fun :: TcSigmaType -> Bool
not_fun TcSigmaType
ty   -- ty is definitely not an arrow type,
                 -- and cannot conceivably become one
      = case HasCallStack => TcSigmaType -> Maybe (TyCon, [TcSigmaType])
TcSigmaType -> Maybe (TyCon, [TcSigmaType])
tcSplitTyConApp_maybe TcSigmaType
ty of
          Just (TyCon
tc, [TcSigmaType]
_) -> TyCon -> Bool
isAlgTyCon TyCon
tc
          Maybe (TyCon, [TcSigmaType])
Nothing      -> Bool
False

{-
Note [Splitting nested sigma types in mismatched function types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When one applies a function to too few arguments, GHC tries to determine this
fact if possible so that it may give a helpful error message. It accomplishes
this by checking if the type of the applied function has more argument types
than supplied arguments.

Previously, GHC computed the number of argument types through tcSplitSigmaTy.
This is incorrect in the face of nested foralls, however!
This caused Ticket #13311, for instance:

  f :: forall a. (Monoid a) => Int -> forall b. (Monoid b) => Maybe a -> Maybe b

If one uses `f` like so:

  do { f; putChar 'a' }

Then tcSplitSigmaTy will decompose the type of `f` into:

  Tyvars: [a]
  Context: (Monoid a)
  Argument types: []
  Return type: Int -> forall b. Monoid b => Maybe a -> Maybe b

That is, it will conclude that there are *no* argument types, and since `f`
was given no arguments, it won't print a helpful error message. On the other
hand, tcSplitNestedSigmaTys correctly decomposes `f`'s type down to:

  Tyvars: [a, b]
  Context: (Monoid a, Monoid b)
  Argument types: [Int, Maybe a]
  Return type: Maybe b

So now GHC recognizes that `f` has one more argument type than it was actually
provided.

Notice that tcSplitNestedSigmaTys looks through function arrows too, regardless
of simple/deep subsumption.  Here we are concerned only whether there is a
mis-match in the number of value arguments.
-}


{- *********************************************************************
*                                                                      *
             Misc utility functions
*                                                                      *
********************************************************************* -}

addExprCtxt :: HsExpr GhcRn -> TcRn a -> TcRn a
addExprCtxt :: forall a. HsExpr (GhcPass 'Renamed) -> TcRn a -> TcRn a
addExprCtxt HsExpr (GhcPass 'Renamed)
e TcRn a
thing_inside
  = case HsExpr (GhcPass 'Renamed)
e of
      HsUnboundVar {} -> TcRn a
thing_inside
      HsExpr (GhcPass 'Renamed)
_ -> SDoc -> TcRn a -> TcRn a
forall a. SDoc -> TcM a -> TcM a
addErrCtxt (HsExpr (GhcPass 'Renamed) -> SDoc
exprCtxt HsExpr (GhcPass 'Renamed)
e) TcRn a
thing_inside
   -- The HsUnboundVar special case addresses situations like
   --    f x = _
   -- when we don't want to say "In the expression: _",
   -- because it is mentioned in the error message itself

exprCtxt :: HsExpr GhcRn -> SDoc
exprCtxt :: HsExpr (GhcPass 'Renamed) -> SDoc
exprCtxt HsExpr (GhcPass 'Renamed)
expr = SDoc -> ThLevel -> SDoc -> SDoc
hang (String -> SDoc
text String
"In the expression:") ThLevel
2 (HsExpr (GhcPass 'Renamed) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HsExpr (GhcPass 'Renamed) -> HsExpr (GhcPass 'Renamed)
forall (p :: Pass). HsExpr (GhcPass p) -> HsExpr (GhcPass p)
stripParensHsExpr HsExpr (GhcPass 'Renamed)
expr))