glpk-hs-0.0.3: Comprehensive GLPK linear programming bindings

Data.LinearProgram.Common

Synopsis

Documentation

data Constraint v c Source

Constructors

Constr (Maybe String) (LinFunc v c) (Bounds c) 

Instances

(Ord v, Read v, Read c) => Read (Constraint v c) 
(Show v, Show c) => Show (Constraint v c) 

type VarBounds v c = Map v (Bounds c)Source

data LP v c Source

Constructors

LP 

Instances

(Ord v, Read v, Read c) => Read (LP v c) 
(Show v, Show c) => Show (LP v c) 

type LinFunc = MapSource

LinFunc v c is a linear combination of variables of type v with coefficients from c. Formally, this is the free c-module on v.

class Module r m | m -> r whereSource

In algebra, if r is a ring, an r-module is an additive group with a scalar multiplication operation. When r is a field, this is equivalent to a vector space.

Methods

(*^) :: r -> m -> mSource

zero :: mSource

(^+^) :: m -> m -> mSource

(^-^) :: m -> m -> mSource

neg :: m -> mSource

Instances

Module Double Double 
Module Int Int 
Module Integer Integer 
Module r m => Module r (IntMap m) 
(IArray UArray m, Module r m) => Module r (UArray Int m) 
Module r m => Module r (Array Int m) 
(Ord k, Module r m) => Module r (Map k m) 
Module r m => Module r (a -> m) 
Integral a => Module (Ratio a) (Ratio a) 

var :: (Ord v, Num c) => v -> LinFunc v cSource

Given a variable v, returns the function equivalent to v.

varSum :: (Ord v, Num c) => [v] -> LinFunc v cSource

Equivalent to vsum . map var.

(*&) :: (Ord v, Num c) => c -> v -> LinFunc v cSource

c *& v is equivalent to c *^ var v.

vsum :: Module r v => [v] -> vSource

Returns a vector sum.

combination :: Module r m => [(r, m)] -> mSource

Given a collection of vectors and scaling coefficients, returns this linear combination.

linCombination :: (Ord v, Num r) => [(r, v)] -> LinFunc v rSource

Given a set of basic variables and coefficients, returns the linear combination obtained by summing.

data Bounds a Source

Constructors

Free 
LBound a 
UBound a 
Equ a 
Bound a a 

Instances

Eq a => Eq (Bounds a) 
Read a => Read (Bounds a) 
Show a => Show (Bounds a) 
Ord a => Monoid (Bounds a)