goal-probability-0.20: Optimization on manifolds of probability distributions with Goal
Safe HaskellNone
LanguageHaskell2010

Goal.Probability.Distributions

Description

Various instances of statistical manifolds, with a focus on exponential families. In the documentation we use \(X\) to indicate a random variable with the distribution being documented.

Synopsis

Univariate

data Bernoulli Source #

The Bernoulli family with Boolean SamplePoints. (because why not). The source coordinate is \(P(X = True)\).

Instances

Instances details
DuallyFlat Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

dualPotential :: (PotentialCoordinates Bernoulli #* Bernoulli) -> Double

Legendre Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

potential :: (PotentialCoordinates Bernoulli # Bernoulli) -> Double

Manifold Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Dimension Bernoulli :: Nat

Discrete Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Cardinality Bernoulli :: Nat Source #

Statistical Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type SamplePoint Bernoulli Source #

ExponentialFamily Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Riemannian Natural Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Mean c Bernoulli => MaximumLikelihood c Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

AbsolutelyContinuous Mean Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

AbsolutelyContinuous Natural Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

AbsolutelyContinuous Source Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition c Source Bernoulli => Generative c Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Mean Natural Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Mean Source Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Natural Mean Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Natural Source Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Source Mean Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Source Natural Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

LogLikelihood Natural Bernoulli Bool Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat k => Riemannian Mean (Replicated k Bernoulli) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

metric :: (Mean # Replicated k Bernoulli) -> Mean #* Tensor (Replicated k Bernoulli) (Replicated k Bernoulli)

flat :: (Mean # Replicated k Bernoulli) -> (Mean # Replicated k Bernoulli) -> Mean #* Replicated k Bernoulli

sharp :: (Mean # Replicated k Bernoulli) -> (Mean #* Replicated k Bernoulli) -> Mean # Replicated k Bernoulli

KnownNat k => Riemannian Natural (Replicated k Bernoulli) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

metric :: (Natural # Replicated k Bernoulli) -> Natural #* Tensor (Replicated k Bernoulli) (Replicated k Bernoulli)

flat :: (Natural # Replicated k Bernoulli) -> (Natural # Replicated k Bernoulli) -> Natural #* Replicated k Bernoulli

sharp :: (Natural # Replicated k Bernoulli) -> (Natural #* Replicated k Bernoulli) -> Natural # Replicated k Bernoulli

type PotentialCoordinates Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates Bernoulli = Natural
type Dimension Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

type Dimension Bernoulli = 1
type Cardinality Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

type SamplePoint Bernoulli Source # 
Instance details

Defined in Goal.Probability.Distributions

data Binomial (n :: Nat) Source #

A distribution over the sum of True realizations of n Bernoulli random variables. The Source coordinate is the probability of \(P(X = True)\) for each Bernoulli random variable.

Instances

Instances details
KnownNat n => Transition Mean Natural (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

transition :: (Mean # Binomial n) -> Natural # Binomial n

KnownNat n => Transition Mean Source (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

transition :: (Mean # Binomial n) -> Source # Binomial n

KnownNat n => Transition Natural Mean (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

transition :: (Natural # Binomial n) -> Mean # Binomial n

KnownNat n => Transition Natural Source (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

transition :: (Natural # Binomial n) -> Source # Binomial n

KnownNat n => Transition Source Mean (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

transition :: (Source # Binomial n) -> Mean # Binomial n

KnownNat n => Transition Source Natural (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

transition :: (Source # Binomial n) -> Natural # Binomial n

(KnownNat n, Transition Mean c (Binomial n)) => MaximumLikelihood c (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

mle :: Sample (Binomial n) -> c # Binomial n Source #

KnownNat n => AbsolutelyContinuous Mean (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

logDensities :: Point Mean (Binomial n) -> Sample (Binomial n) -> [Double] Source #

densities :: Point Mean (Binomial n) -> Sample (Binomial n) -> [Double] Source #

KnownNat n => AbsolutelyContinuous Natural (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

logDensities :: Point Natural (Binomial n) -> Sample (Binomial n) -> [Double] Source #

densities :: Point Natural (Binomial n) -> Sample (Binomial n) -> [Double] Source #

KnownNat n => AbsolutelyContinuous Source (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

logDensities :: Point Source (Binomial n) -> Sample (Binomial n) -> [Double] Source #

densities :: Point Source (Binomial n) -> Sample (Binomial n) -> [Double] Source #

(KnownNat n, Transition c Source (Binomial n)) => Generative c (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

samplePoint :: Point c (Binomial n) -> Random (SamplePoint (Binomial n)) Source #

sample :: Int -> Point c (Binomial n) -> Random (Sample (Binomial n)) Source #

KnownNat n => LogLikelihood Natural (Binomial n) Int Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat n => DuallyFlat (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

dualPotential :: (PotentialCoordinates (Binomial n) #* Binomial n) -> Double

KnownNat n => Legendre (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

potential :: (PotentialCoordinates (Binomial n) # Binomial n) -> Double

KnownNat n => Manifold (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Dimension (Binomial n) :: Nat

KnownNat n => Discrete (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Cardinality (Binomial n) :: Nat Source #

KnownNat n => Statistical (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type SamplePoint (Binomial n) Source #

KnownNat n => ExponentialFamily (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates (Binomial n) = Natural
type Dimension (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

type Dimension (Binomial n) = 1
type Cardinality (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

type Cardinality (Binomial n) = n + 1
type SamplePoint (Binomial n) Source # 
Instance details

Defined in Goal.Probability.Distributions

data Categorical (n :: Nat) Source #

A Categorical distribution where the probability of the first category \(P(X = 0)\) is given by the normalization constraint.

Instances

Instances details
KnownNat n => Transition Mean Natural (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Mean Source (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat n => Transition Natural Mean (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat n => Transition Natural Source (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Source Mean (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat n => Transition Source Natural (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

(KnownNat n, Transition Mean c (Categorical n)) => MaximumLikelihood c (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

mle :: Sample (Categorical n) -> c # Categorical n Source #

KnownNat n => AbsolutelyContinuous Mean (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat n => AbsolutelyContinuous Natural (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat n => AbsolutelyContinuous Source (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

(KnownNat n, Transition c Source (Categorical n)) => Generative c (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat n => LogLikelihood Natural (Categorical n) Int Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat n => DuallyFlat (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

dualPotential :: (PotentialCoordinates (Categorical n) #* Categorical n) -> Double

KnownNat n => Legendre (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

potential :: (PotentialCoordinates (Categorical n) # Categorical n) -> Double

KnownNat n => Manifold (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Dimension (Categorical n) :: Nat

KnownNat n => Discrete (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Cardinality (Categorical n) :: Nat Source #

KnownNat n => Statistical (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type SamplePoint (Categorical n) Source #

KnownNat n => ExponentialFamily (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates (Categorical n) = Natural
type Dimension (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

type Dimension (Categorical n) = n
type Cardinality (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

type SamplePoint (Categorical n) Source # 
Instance details

Defined in Goal.Probability.Distributions

categoricalWeights :: Transition c Source (Categorical n) => (c # Categorical n) -> Vector (n + 1) Double Source #

Returns the probabilities over the whole sample space \((0 \ldots n)\) of the given categorical distribution.

data Poisson Source #

The Manifold of Poisson distributions. The Source coordinate is the rate of the Poisson distribution.

Instances

Instances details
DuallyFlat Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

dualPotential :: (PotentialCoordinates Poisson #* Poisson) -> Double

Legendre Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

potential :: (PotentialCoordinates Poisson # Poisson) -> Double

Legendre CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Methods

potential :: (PotentialCoordinates CoMPoisson # CoMPoisson) -> Double

Manifold Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Dimension Poisson :: Nat

Statistical Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type SamplePoint Poisson Source #

ExponentialFamily Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

ExponentialFamily CoMPoisson Source # 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Transition Mean c Poisson => MaximumLikelihood c Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

mle :: Sample Poisson -> c # Poisson Source #

AbsolutelyContinuous Mean Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

AbsolutelyContinuous Natural Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

AbsolutelyContinuous Natural CoMPoisson Source # 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

AbsolutelyContinuous Source Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition c Source Poisson => Generative c Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition c Source CoMPoisson => Generative c CoMPoisson Source # 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Transition Mean Natural Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Mean Source Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

transition :: (Mean # Poisson) -> Source # Poisson

Transition Natural Mean Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Natural Mean CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Transition Natural Source Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Natural Source CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Transition Source Mean Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

transition :: (Source # Poisson) -> Mean # Poisson

Transition Source Mean CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Transition Source Natural Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Source Natural CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

LogLikelihood Natural Poisson Int Source # 
Instance details

Defined in Goal.Probability.Distributions

LogLikelihood Natural CoMPoisson Int Source # 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

type PotentialCoordinates Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates Poisson = Natural
type PotentialCoordinates CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

type PotentialCoordinates CoMPoisson = Natural
type Dimension Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

type Dimension Poisson = 1
type SamplePoint Poisson Source # 
Instance details

Defined in Goal.Probability.Distributions

data VonMises Source #

The Manifold of VonMises distributions. The Source coordinates are the mean and concentration.

Instances

Instances details
Legendre VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

potential :: (PotentialCoordinates VonMises # VonMises) -> Double

Manifold VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Dimension VonMises :: Nat

Statistical VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type SamplePoint VonMises Source #

ExponentialFamily VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

AbsolutelyContinuous Natural VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

AbsolutelyContinuous Source VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Generative Natural VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Generative Source VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Natural Mean VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Natural Source VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Source Mean VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Transition Source Natural VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

LogLikelihood Natural VonMises Double Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates VonMises = Natural
type Dimension VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

type Dimension VonMises = 2
type SamplePoint VonMises Source # 
Instance details

Defined in Goal.Probability.Distributions

Multivariate

data Dirichlet (k :: Nat) Source #

A Dirichlet manifold contains distributions over weights of a Categorical distribution.

Instances

Instances details
KnownNat k => Transition Natural Mean (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

transition :: (Natural # Dirichlet k) -> Mean # Dirichlet k

KnownNat k => Transition Natural Source (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat k => Transition Source Natural (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat k => AbsolutelyContinuous Natural (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat k => AbsolutelyContinuous Source (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

(KnownNat k, Transition c Source (Dirichlet k)) => Generative c (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

samplePoint :: Point c (Dirichlet k) -> Random (SamplePoint (Dirichlet k)) Source #

sample :: Int -> Point c (Dirichlet k) -> Random (Sample (Dirichlet k)) Source #

KnownNat k => LogLikelihood Natural (Dirichlet k) (Vector k Double) Source # 
Instance details

Defined in Goal.Probability.Distributions

KnownNat k => Legendre (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

potential :: (PotentialCoordinates (Dirichlet k) # Dirichlet k) -> Double

KnownNat k => Manifold (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Dimension (Dirichlet k) :: Nat

KnownNat k => Statistical (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type SamplePoint (Dirichlet k) Source #

KnownNat k => ExponentialFamily (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates (Dirichlet k) = Natural
type Dimension (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

type Dimension (Dirichlet k) = k
type SamplePoint (Dirichlet k) Source # 
Instance details

Defined in Goal.Probability.Distributions

type SamplePoint (Dirichlet k) = Vector k Double

LocationShape

newtype LocationShape l s Source #

A LocationShape Manifold is a Product of some location Manifold and some shape Manifold.

Constructors

LocationShape (l, s) 

Instances

Instances details
DuallyFlat Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

dualPotential :: (PotentialCoordinates Normal #* Normal) -> Double

Legendre Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

potential :: (PotentialCoordinates Normal # Normal) -> Double

Legendre CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Methods

potential :: (PotentialCoordinates CoMPoisson # CoMPoisson) -> Double

ExponentialFamily Normal Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

ExponentialFamily CoMPoisson Source # 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Riemannian Mean Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

metric :: (Mean # Normal) -> Mean #* Tensor Normal Normal

flat :: (Mean # Normal) -> (Mean # Normal) -> Mean #* Normal

sharp :: (Mean # Normal) -> (Mean #* Normal) -> Mean # Normal

Riemannian Natural Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

metric :: (Natural # Normal) -> Natural #* Tensor Normal Normal

flat :: (Natural # Normal) -> (Natural # Normal) -> Natural #* Normal

sharp :: (Natural # Normal) -> (Natural #* Normal) -> Natural # Normal

Transition Mean c Normal => MaximumLikelihood c Normal Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

mle :: Sample Normal -> c # Normal Source #

AbsolutelyContinuous Mean Normal Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

AbsolutelyContinuous Natural Normal Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

AbsolutelyContinuous Natural CoMPoisson Source # 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

AbsolutelyContinuous Source Normal Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Transition c Source Normal => Generative c Normal Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Transition c Source CoMPoisson => Generative c CoMPoisson Source # 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Transition Mean Natural Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Mean # Normal) -> Natural # Normal

Transition Mean Source Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Mean # Normal) -> Source # Normal

Transition Natural Mean Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Natural # Normal) -> Mean # Normal

Transition Natural Mean CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Transition Natural Source Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Transition Natural Source CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Transition Source Mean Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Source # Normal) -> Mean # Normal

Transition Source Mean CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

Transition Source Natural Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Transition Source Natural CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

LogLikelihood Natural Normal Double Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

LogLikelihood Natural CoMPoisson Int Source # 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

(KnownNat n, KnownNat (Triangular n)) => Transition Mean Natural (MultivariateNormal n) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

KnownNat n => Transition Mean Source (MultivariateNormal n) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

(KnownNat n, KnownNat (Triangular n)) => Transition Natural Mean (MultivariateNormal n) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

KnownNat n => Transition Natural Source (MultivariateNormal n) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

KnownNat n => Transition Source Mean (MultivariateNormal n) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

KnownNat n => Transition Source Natural (MultivariateNormal n) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

(KnownNat n, KnownNat k) => Transition Natural Source (Affine Tensor (MVNMean n) (Replicated n Normal) (MVNMean k)) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Natural # Affine Tensor (MVNMean n) (Replicated n Normal) (MVNMean k)) -> Source # Affine Tensor (MVNMean n) (Replicated n Normal) (MVNMean k)

(KnownNat n, KnownNat k) => Transition Natural Source (Affine Tensor (MVNMean n) (MultivariateNormal n) (MVNMean k)) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Natural # Affine Tensor (MVNMean n) (MultivariateNormal n) (MVNMean k)) -> Source # Affine Tensor (MVNMean n) (MultivariateNormal n) (MVNMean k)

Transition Natural Source (Affine Tensor NormalMean Normal NormalMean) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Natural # Affine Tensor NormalMean Normal NormalMean) -> Source # Affine Tensor NormalMean Normal NormalMean

(KnownNat n, KnownNat k) => Transition Source Natural (Affine Tensor (MVNMean n) (Replicated n Normal) (MVNMean k)) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Source # Affine Tensor (MVNMean n) (Replicated n Normal) (MVNMean k)) -> Natural # Affine Tensor (MVNMean n) (Replicated n Normal) (MVNMean k)

(KnownNat n, KnownNat k) => Transition Source Natural (Affine Tensor (MVNMean n) (MultivariateNormal n) (MVNMean k)) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Source # Affine Tensor (MVNMean n) (MultivariateNormal n) (MVNMean k)) -> Natural # Affine Tensor (MVNMean n) (MultivariateNormal n) (MVNMean k)

Transition Source Natural (Affine Tensor NormalMean Normal NormalMean) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

transition :: (Source # Affine Tensor NormalMean Normal NormalMean) -> Natural # Affine Tensor NormalMean Normal NormalMean

(KnownNat n, Transition Mean c (MultivariateNormal n)) => MaximumLikelihood c (MultivariateNormal n) Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

(KnownNat n, KnownNat (Triangular n)) => AbsolutelyContinuous Natural (MultivariateNormal n) Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

(KnownNat n, KnownNat (Triangular n)) => AbsolutelyContinuous Source (MultivariateNormal n) Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

(KnownNat n, KnownNat (Triangular n), Transition c Source (MultivariateNormal n)) => Generative c (MultivariateNormal n) Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

KnownNat n => LogLikelihood Natural (MultivariateNormal n) (Vector n Double) Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

(Statistical l, Statistical s, Product (LocationShape l s), Storable (SamplePoint s), SamplePoint l ~ SamplePoint s, AbsolutelyContinuous c (LocationShape l s), KnownNat n) => AbsolutelyContinuous c (LocationShape (Replicated n l) (Replicated n s)) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

logDensities :: Point c (LocationShape (Replicated n l) (Replicated n s)) -> Sample (LocationShape (Replicated n l) (Replicated n s)) -> [Double] Source #

densities :: Point c (LocationShape (Replicated n l) (Replicated n s)) -> Sample (LocationShape (Replicated n l) (Replicated n s)) -> [Double] Source #

(KnownNat n, KnownNat (Triangular n)) => DuallyFlat (MultivariateNormal n) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

dualPotential :: (PotentialCoordinates (MultivariateNormal n) #* MultivariateNormal n) -> Double

(KnownNat n, KnownNat (Triangular n)) => Legendre (MultivariateNormal n) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

Methods

potential :: (PotentialCoordinates (MultivariateNormal n) # MultivariateNormal n) -> Double

(KnownNat n, KnownNat (Triangular n)) => ExponentialFamily (MultivariateNormal n) Source # 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

(Manifold l, Manifold s) => Manifold (LocationShape l s) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type Dimension (LocationShape l s) :: Nat

(Manifold l, Manifold s) => Product (LocationShape l s) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type First (LocationShape l s)

type Second (LocationShape l s)

Methods

join :: (c # First (LocationShape l s)) -> (c # Second (LocationShape l s)) -> c # LocationShape l s

split :: (c # LocationShape l s) -> (c # First (LocationShape l s), c # Second (LocationShape l s))

(Statistical l, Manifold s) => Statistical (LocationShape l s) Source # 
Instance details

Defined in Goal.Probability.Distributions

Associated Types

type SamplePoint (LocationShape l s) Source #

(Manifold l, Manifold s) => Translation (LocationShape l s) l Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

(>+>) :: (c # LocationShape l s) -> (c # l) -> c # LocationShape l s

anchor :: (c # LocationShape l s) -> c # l

(KnownNat n, Manifold l, Manifold s) => Translation (Replicated n (LocationShape l s)) (Replicated n l) Source # 
Instance details

Defined in Goal.Probability.Distributions

Methods

(>+>) :: (c # Replicated n (LocationShape l s)) -> (c # Replicated n l) -> c # Replicated n (LocationShape l s)

anchor :: (c # Replicated n (LocationShape l s)) -> c # Replicated n l

type PotentialCoordinates Normal 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

type PotentialCoordinates Normal = Natural
type PotentialCoordinates CoMPoisson 
Instance details

Defined in Goal.Probability.Distributions.CoMPoisson

type PotentialCoordinates CoMPoisson = Natural
type PotentialCoordinates (MultivariateNormal n) 
Instance details

Defined in Goal.Probability.Distributions.Gaussian

type PotentialCoordinates (MultivariateNormal n) = Natural
type PotentialCoordinates (LocationShape l s) Source # 
Instance details

Defined in Goal.Probability.Distributions

type PotentialCoordinates (LocationShape l s) = Natural
type Dimension (LocationShape l s) Source # 
Instance details

Defined in Goal.Probability.Distributions

type Dimension (LocationShape l s) = Dimension (l, s)
type First (LocationShape l s) Source # 
Instance details

Defined in Goal.Probability.Distributions

type First (LocationShape l s) = First (l, s)
type Second (LocationShape l s) Source # 
Instance details

Defined in Goal.Probability.Distributions

type Second (LocationShape l s) = Second (l, s)
type SamplePoint (LocationShape l s) Source # 
Instance details

Defined in Goal.Probability.Distributions