Stability | provisional |
---|---|
Maintainer | Alberto Ruiz <aruiz@um.es> |
Solution of general multidimensional linear and multilinear systems.
- solve :: (Compat i, Coord t) => NArray i t -> NArray i t -> NArray i t
- solveHomog :: (Compat i, Coord t) => NArray i t -> [Name] -> Either Double Int -> [NArray i t]
- solveHomog1 :: (Compat i, Coord t) => NArray i t -> [Name] -> NArray i t
- solveH :: (Compat i, Coord t) => NArray i t -> [Char] -> NArray i t
- solveP :: Tensor Double -> Tensor Double -> Name -> Tensor Double
- data ALSParam i t = ALSParam {}
- defaultParameters :: ALSParam i t
- mlSolve :: (Compat i, Coord t, Num (NArray i t)) => ALSParam i t -> [NArray i t] -> [NArray i t] -> NArray i t -> ([NArray i t], [Double])
- mlSolveH :: (Compat i, Coord t, Num (NArray i t)) => ALSParam i t -> [NArray i t] -> [NArray i t] -> ([NArray i t], [Double])
- mlSolveP :: ALSParam Variant Double -> [Tensor Double] -> [Tensor Double] -> Tensor Double -> Name -> ([Tensor Double], [Double])
- solveFactors :: (Coord t, Random t, Compat i, Num (NArray i t)) => Int -> ALSParam i t -> [NArray i t] -> String -> NArray i t -> ([NArray i t], [Double])
- solveFactorsH :: (Coord t, Random t, Compat i, Num (NArray i t)) => Int -> ALSParam i t -> [NArray i t] -> String -> ([NArray i t], [Double])
- eps :: Double
- eqnorm :: (Compat i, Show (NArray i Double)) => [NArray i Double] -> [NArray i Double]
- infoRank :: Field t => Matrix t -> Matrix t
- solve' :: (Compat i, Coord t, Coord t1) => (Matrix t1 -> Matrix t) -> NArray i t1 -> NArray i t -> NArray i t
- solveHomog' :: (Compat i, Coord t1, Coord t) => (Matrix t -> Matrix t1) -> NArray i t -> [Name] -> Either Double Int -> [NArray i t1]
- solveHomog1' :: (Compat i, Coord t, Coord t1) => (Matrix t -> Matrix t1) -> NArray i t -> [Name] -> NArray i t1
- solveP' :: Coord t => (Matrix Double -> Matrix t) -> NArray Variant Double -> NArray Variant Double -> Name -> NArray Variant t
Linear systems
:: (Compat i, Coord t) | |
=> NArray i t | coefficients (a) |
-> NArray i t | target (b) |
-> NArray i t | result (x) |
Solution of the linear system a x = b, where a and b are general multidimensional arrays. The structure and dimension names of the result are inferred from the arguments.
:: (Compat i, Coord t) | |
=> NArray i t | coefficients (a) |
-> [Name] | desired dimensions for the result (a subset selected from the target). |
-> Either Double Int | Left "numeric zero" (e.g. eps), Right "theoretical" rank |
-> [NArray i t] | basis for the solutions (x) |
Solution of the homogeneous linear system a x = 0, where a is a general multidimensional array.
If the system is overconstrained we may provide the theoretical rank to get a MSE solution.
solveHomog1 :: (Compat i, Coord t) => NArray i t -> [Name] -> NArray i tSource
A simpler way to use solveHomog
, which returns just one solution.
If the system is overconstrained it returns the MSE solution.
solveH :: (Compat i, Coord t) => NArray i t -> [Char] -> NArray i tSource
solveHomog1
for single letter index names.
:: Tensor Double | coefficients (a) |
-> Tensor Double | desired result (b) |
-> Name | the homogeneous dimension |
-> Tensor Double | result (x) |
Solution of the linear system a x = b, where a and b are general multidimensional arrays, with homogeneous equality along a given index.
Multilinear systems
General
optimization parameters for alternating least squares
ALSParam | |
|
defaultParameters :: ALSParam i tSource
nMax = 20, epsilon = 1E-3, delta = 1, post = id, postk = const id, presys = id
:: (Compat i, Coord t, Num (NArray i t)) | |
=> ALSParam i t | optimization parameters |
-> [NArray i t] | coefficients (a), given as a list of factors. |
-> [NArray i t] | initial solution [x,y,z...] |
-> NArray i t | target (b) |
-> ([NArray i t], [Double]) | Solution and error history |
Solution of a multilinear system a x y z ... = b based on alternating least squares.
:: (Compat i, Coord t, Num (NArray i t)) | |
=> ALSParam i t | optimization parameters |
-> [NArray i t] | coefficients (a), given as a list of factors. |
-> [NArray i t] | initial solution [x,y,z...] |
-> ([NArray i t], [Double]) | Solution and error history |
Solution of the homogeneous multilinear system a x y z ... = 0 based on alternating least squares.
:: ALSParam Variant Double | optimization parameters |
-> [Tensor Double] | coefficients (a), given as a list of factors. |
-> [Tensor Double] | initial solution [x,y,z...] |
-> Tensor Double | target (b) |
-> Name | homogeneous index |
-> ([Tensor Double], [Double]) | Solution and error history |
Solution of a multilinear system a x y z ... = b, with a homogeneous index, based on alternating least squares.
Factorized
:: (Coord t, Random t, Compat i, Num (NArray i t)) | |
=> Int | seed for random initialization |
-> ALSParam i t | optimization parameters |
-> [NArray i t] | coefficient array (a), (also factorized) |
-> String | index pairs for the factors separated by spaces |
-> ([NArray i t], [Double]) | solution and error history |
Homogeneous factorized system. Given an array a, given as a list of factors as, and a list of pairs of indices ["pi","qj", "rk", etc.], we try to compute linear transformations x!"pi", y!"pi", z!"rk", etc. such that product [a,x,y,z,...] == 0.
Utilities
The machine precision of a Double: eps = 2.22044604925031e-16
(the value used by GNU-Octave).
eqnorm :: (Compat i, Show (NArray i Double)) => [NArray i Double] -> [NArray i Double]Source
post processing function that modifies a list of tensors so that they have equal frobenius norm
infoRank :: Field t => Matrix t -> Matrix tSource
debugging function (e.g. for presys
), which shows rows, columns and rank of the
coefficient matrix of a linear system.
solve' :: (Compat i, Coord t, Coord t1) => (Matrix t1 -> Matrix t) -> NArray i t1 -> NArray i t -> NArray i tSource
solveHomog' :: (Compat i, Coord t1, Coord t) => (Matrix t -> Matrix t1) -> NArray i t -> [Name] -> Either Double Int -> [NArray i t1]Source