hgeometry-0.10.0.0: Geometric Algorithms, Data structures, and Data types.

Data.Geometry.SubLine

Description

SubLine; a part of a line

Synopsis

# Documentation

data SubLine d p s r Source #

Part of a line. The interval is ranged based on the vector of the line l, and s.t.t zero is the anchorPoint of l.

Constructors

 SubLine Fields_line :: Line d r _subRange :: Interval p s
Instances
 Arity d => Functor (SubLine d p s) Source # Instance detailsDefined in Data.Geometry.SubLine Methodsfmap :: (a -> b) -> SubLine d p s a -> SubLine d p s b #(<\$) :: a -> SubLine d p s b -> SubLine d p s a # Arity d => Foldable (SubLine d p s) Source # Instance detailsDefined in Data.Geometry.SubLine Methodsfold :: Monoid m => SubLine d p s m -> m #foldMap :: Monoid m => (a -> m) -> SubLine d p s a -> m #foldr :: (a -> b -> b) -> b -> SubLine d p s a -> b #foldr' :: (a -> b -> b) -> b -> SubLine d p s a -> b #foldl :: (b -> a -> b) -> b -> SubLine d p s a -> b #foldl' :: (b -> a -> b) -> b -> SubLine d p s a -> b #foldr1 :: (a -> a -> a) -> SubLine d p s a -> a #foldl1 :: (a -> a -> a) -> SubLine d p s a -> a #toList :: SubLine d p s a -> [a] #null :: SubLine d p s a -> Bool #length :: SubLine d p s a -> Int #elem :: Eq a => a -> SubLine d p s a -> Bool #maximum :: Ord a => SubLine d p s a -> a #minimum :: Ord a => SubLine d p s a -> a #sum :: Num a => SubLine d p s a -> a #product :: Num a => SubLine d p s a -> a # Arity d => Traversable (SubLine d p s) Source # Instance detailsDefined in Data.Geometry.SubLine Methodstraverse :: Applicative f => (a -> f b) -> SubLine d p s a -> f (SubLine d p s b) #sequenceA :: Applicative f => SubLine d p s (f a) -> f (SubLine d p s a) #mapM :: Monad m => (a -> m b) -> SubLine d p s a -> m (SubLine d p s b) #sequence :: Monad m => SubLine d p s (m a) -> m (SubLine d p s a) # (Eq r, Eq s, Fractional r, Eq p, Arity d) => Eq (SubLine d p s r) Source # Instance detailsDefined in Data.Geometry.SubLine Methods(==) :: SubLine d p s r -> SubLine d p s r -> Bool #(/=) :: SubLine d p s r -> SubLine d p s r -> Bool # (Show r, Show s, Show p, Arity d) => Show (SubLine d p s r) Source # Instance detailsDefined in Data.Geometry.SubLine MethodsshowsPrec :: Int -> SubLine d p s r -> ShowS #show :: SubLine d p s r -> String #showList :: [SubLine d p s r] -> ShowS # (Arbitrary r, Arbitrary p, Arbitrary s, Arity d, Ord r, Ord s, Ord p, Num r) => Arbitrary (SubLine d p s r) Source # Instance detailsDefined in Data.Geometry.SubLine Methodsarbitrary :: Gen (SubLine d p s r) #shrink :: SubLine d p s r -> [SubLine d p s r] # (Fractional r, Ord r, HasBoundingLines o) => IsIntersectableWith (SubLine 2 a r r) (Slab o a r) Source # Instance detailsDefined in Data.Geometry.Slab Methodsintersect :: SubLine 2 a r r -> Slab o a r -> Intersection (SubLine 2 a r r) (Slab o a r) #intersects :: SubLine 2 a r r -> Slab o a r -> Bool #nonEmptyIntersection :: proxy (SubLine 2 a r r) -> proxy (Slab o a r) -> Intersection (SubLine 2 a r r) (Slab o a r) -> Bool # (Ord r, Fractional r) => IsIntersectableWith (SubLine 2 p (UnBounded r) r) (SubLine 2 p (UnBounded r) r) Source # Instance detailsDefined in Data.Geometry.SubLine Methodsintersect :: SubLine 2 p (UnBounded r) r -> SubLine 2 p (UnBounded r) r -> Intersection (SubLine 2 p (UnBounded r) r) (SubLine 2 p (UnBounded r) r) #intersects :: SubLine 2 p (UnBounded r) r -> SubLine 2 p (UnBounded r) r -> Bool #nonEmptyIntersection :: proxy (SubLine 2 p (UnBounded r) r) -> proxy (SubLine 2 p (UnBounded r) r) -> Intersection (SubLine 2 p (UnBounded r) r) (SubLine 2 p (UnBounded r) r) -> Bool # (Ord r, Fractional r) => IsIntersectableWith (SubLine 2 p r r) (SubLine 2 p r r) Source # Instance detailsDefined in Data.Geometry.SubLine Methodsintersect :: SubLine 2 p r r -> SubLine 2 p r r -> Intersection (SubLine 2 p r r) (SubLine 2 p r r) #intersects :: SubLine 2 p r r -> SubLine 2 p r r -> Bool #nonEmptyIntersection :: proxy (SubLine 2 p r r) -> proxy (SubLine 2 p r r) -> Intersection (SubLine 2 p r r) (SubLine 2 p r r) -> Bool # type Dimension (SubLine d p s r) Source # Instance detailsDefined in Data.Geometry.SubLine type Dimension (SubLine d p s r) = d type IntersectionOf (SubLine 2 p s r) (Slab o a r) Source # Instance detailsDefined in Data.Geometry.Slab type IntersectionOf (SubLine 2 p s r) (Slab o a r) = NoIntersection ': (SubLine 2 () s r ': ([] :: [Type])) type IntersectionOf (SubLine 2 p s r) (SubLine 2 q s r) Source # Instance detailsDefined in Data.Geometry.SubLine type IntersectionOf (SubLine 2 p s r) (SubLine 2 q s r) = NoIntersection ': (Point 2 r ': (SubLine 2 p s r ': ([] :: [Type])))

subRange :: forall d p s r p s. Lens (SubLine d p s r) (SubLine d p s r) (Interval p s) (Interval p s) Source #

line :: forall d p s r d r. Lens (SubLine d p s r) (SubLine d p s r) (Line d r) (Line d r) Source #

fixEndPoints :: (Num r, Arity d) => SubLine d p r r -> SubLine d (Point d r :+ p) r r Source #

Annotate the subRange with the actual ending points

dropExtra :: SubLine d p s r -> SubLine d () s r Source #

forget the extra information stored at the endpoints of the subline.

_unBounded :: Prism' (SubLine d p (UnBounded r) r) (SubLine d p r r) Source #

toUnbounded :: SubLine d p r r -> SubLine d p (UnBounded r) r Source #

Transform into an subline with a potentially unbounded interval

fromUnbounded :: SubLine d p (UnBounded r) r -> Maybe (SubLine d p r r) Source #

Try to make a potentially unbounded subline into a bounded one.

onSubLine :: (Ord r, Fractional r, Arity d) => Point d r -> SubLine d p r r -> Bool Source #

given point p, and a Subline l r such that p lies on line l, test if it lies on the subline, i.e. in the interval r

onSubLineUB :: (Ord r, Fractional r) => Point 2 r -> SubLine 2 p (UnBounded r) r -> Bool Source #

given point p, and a Subline l r such that p lies on line l, test if it lies on the subline, i.e. in the interval r

onSubLine2 :: (Ord r, Num r) => Point 2 r -> SubLine 2 p r r -> Bool Source #

given point p, and a Subline l r such that p lies on line l, test if it lies on the subline, i.e. in the interval r

onSubLine2UB :: (Ord r, Fractional r) => Point 2 r -> SubLine 2 p (UnBounded r) r -> Bool Source #

given point p, and a Subline l r such that p lies on line l, test if it lies on the subline, i.e. in the interval r

getEndPointsUnBounded :: (Num r, Arity d) => SubLine d p (UnBounded r) r -> Interval p (UnBounded (Point d r)) Source #

Get the endpoints of an unbounded interval

fromLine :: Arity d => Line d r -> SubLine d () (UnBounded r) r Source #