{-|
A simple 'Amount' is some quantity of money, shares, or anything else.
It has a (possibly null) 'CommoditySymbol' and a numeric quantity:

@
  $1
  £-50
  EUR 3.44
  GOOG 500
  1.5h
  90 apples
  0
@

It may also have an assigned 'Price', representing this amount's per-unit
or total cost in a different commodity. If present, this is rendered like
so:

@
  EUR 2 \@ $1.50  (unit price)
  EUR 2 \@\@ $3   (total price)
@

A 'MixedAmount' is zero or more simple amounts, so can represent multiple
commodities; this is the type most often used:

@
  0
  $50 + EUR 3
  16h + $13.55 + AAPL 500 + 6 oranges
@

A mixed amount is always \"normalised\", it has no more than one amount
in each commodity and price. When calling 'amounts' it will have no zero
amounts, or just a single zero amount and no other amounts.

Limited arithmetic with simple and mixed amounts is supported, best used
with similar amounts since it mostly ignores assigned prices and commodity
exchange rates.

-}

{-# LANGUAGE OverloadedStrings  #-}
{-# LANGUAGE RecordWildCards    #-}
{-# LANGUAGE NamedFieldPuns #-}

module Hledger.Data.Amount (
  -- * Commodity
  showCommoditySymbol,
  isNonsimpleCommodityChar,
  quoteCommoditySymbolIfNeeded,

  -- * Amount
  -- ** arithmetic
  nullamt,
  missingamt,
  num,
  usd,
  eur,
  gbp,
  per,
  hrs,
  at,
  (@@),
  amountWithCommodity,
  amountCost,
  amountIsZero,
  amountLooksZero,
  divideAmount,
  multiplyAmount,
  invertAmount,
  -- ** styles
  amountstyle,
  canonicaliseAmount,
  styleAmount,
  amountSetStyles,
  amountStyleSetRounding,
  amountStylesSetRounding,
  amountUnstyled,
  -- ** rendering
  AmountDisplayOpts(..),
  noColour,
  noPrice,
  oneLine,
  csvDisplay,
  showAmountB,
  showAmount,
  showAmountPrice,
  cshowAmount,
  showAmountWithZeroCommodity,
  showAmountDebug,
  showAmountWithoutPrice,
  amountSetPrecision,
  amountSetPrecisionMin,
  amountSetPrecisionMax,
  withPrecision,
  amountSetFullPrecision,
  amountSetFullPrecisionOr,
  amountInternalPrecision,
  amountDisplayPrecision,
  defaultMaxPrecision,
  setAmountInternalPrecision,
  withInternalPrecision,
  setAmountDecimalPoint,
  withDecimalPoint,
  amountStripPrices,

  -- * MixedAmount
  nullmixedamt,
  missingmixedamt,
  isMissingMixedAmount,
  mixed,
  mixedAmount,
  maAddAmount,
  maAddAmounts,
  amounts,
  amountsRaw,
  amountsPreservingZeros,
  maCommodities,
  filterMixedAmount,
  filterMixedAmountByCommodity,
  mapMixedAmount,
  unifyMixedAmount,
  mixedAmountStripPrices,
  -- ** arithmetic
  mixedAmountCost,
  maNegate,
  maPlus,
  maMinus,
  maSum,
  divideMixedAmount,
  multiplyMixedAmount,
  averageMixedAmounts,
  isNegativeAmount,
  isNegativeMixedAmount,
  mixedAmountIsZero,
  maIsZero,
  maIsNonZero,
  mixedAmountLooksZero,
  -- ** styles
  canonicaliseMixedAmount,
  styleMixedAmount,
  mixedAmountSetStyles,
  mixedAmountUnstyled,
  -- ** rendering
  showMixedAmount,
  showMixedAmountOneLine,
  showMixedAmountDebug,
  showMixedAmountWithoutPrice,
  showMixedAmountOneLineWithoutPrice,
  showMixedAmountElided,
  showMixedAmountWithZeroCommodity,
  showMixedAmountB,
  showMixedAmountLinesB,
  wbToText,
  wbUnpack,
  mixedAmountSetPrecision,
  mixedAmountSetFullPrecision,
  mixedAmountSetPrecisionMin,
  mixedAmountSetPrecisionMax,

  -- * misc.
  tests_Amount
) where

import Prelude hiding (Applicative(..))
import Control.Applicative (Applicative(..))
import Control.Monad (foldM)
import Data.Char (isDigit)
import Data.Decimal (DecimalRaw(..), decimalPlaces, normalizeDecimal, roundTo)
import Data.Default (Default(..))
import Data.Foldable (toList)
import Data.List (find, foldl', intercalate, intersperse, mapAccumL, partition)
import Data.List.NonEmpty (NonEmpty(..), nonEmpty)
import qualified Data.Map.Strict as M
import qualified Data.Set as S
import Data.Maybe (fromMaybe, isNothing, isJust)
import Data.Semigroup (Semigroup(..))
import qualified Data.Text as T
import qualified Data.Text.Lazy.Builder as TB
import Data.Word (Word8)
import Safe (headDef, lastDef, lastMay)
import System.Console.ANSI (Color(..),ColorIntensity(..))

import Test.Tasty (testGroup)
import Test.Tasty.HUnit ((@?=), assertBool, testCase)

import Hledger.Data.Types
import Hledger.Utils (colorB, numDigitsInt, numDigitsInteger)
import Hledger.Utils.Text (textQuoteIfNeeded)
import Text.WideString (WideBuilder(..), wbFromText, wbToText, wbUnpack)
import Data.Functor ((<&>))
-- import Data.Function ((&))
-- import Hledger.Utils.Debug (dbg0)


-- A 'Commodity' is a symbol representing a currency or some other kind of
-- thing we are tracking, and some display preferences that tell how to
-- display 'Amount's of the commodity - is the symbol on the left or right,
-- are thousands separated by comma, significant decimal places and so on.

-- | Show space-containing commodity symbols quoted, as they are in a journal.
showCommoditySymbol :: T.Text -> T.Text
showCommoditySymbol :: CommoditySymbol -> CommoditySymbol
showCommoditySymbol = CommoditySymbol -> CommoditySymbol
textQuoteIfNeeded

-- characters that may not be used in a non-quoted commodity symbol
isNonsimpleCommodityChar :: Char -> Bool
isNonsimpleCommodityChar :: Char -> Bool
isNonsimpleCommodityChar = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 Bool -> Bool -> Bool
(||) Char -> Bool
isDigit Char -> Bool
isOther
  where
    otherChars :: CommoditySymbol
otherChars = CommoditySymbol
"-+.@*;\t\n \"{}=" :: T.Text
    isOther :: Char -> Bool
isOther Char
c = (Char -> Bool) -> CommoditySymbol -> Bool
T.any (forall a. Eq a => a -> a -> Bool
==Char
c) CommoditySymbol
otherChars

quoteCommoditySymbolIfNeeded :: T.Text -> T.Text
quoteCommoditySymbolIfNeeded :: CommoditySymbol -> CommoditySymbol
quoteCommoditySymbolIfNeeded CommoditySymbol
s
  | (Char -> Bool) -> CommoditySymbol -> Bool
T.any Char -> Bool
isNonsimpleCommodityChar CommoditySymbol
s = CommoditySymbol
"\"" forall a. Semigroup a => a -> a -> a
<> CommoditySymbol
s forall a. Semigroup a => a -> a -> a
<> CommoditySymbol
"\""
  | Bool
otherwise = CommoditySymbol
s


-- | Options for the display of Amount and MixedAmount.
-- (ee also Types.AmountStyle.
data AmountDisplayOpts = AmountDisplayOpts
  { AmountDisplayOpts -> Bool
displayPrice         :: Bool       -- ^ Whether to display the Price of an Amount.
  , AmountDisplayOpts -> Bool
displayZeroCommodity :: Bool       -- ^ If the Amount rounds to 0, whether to display its commodity string.
  , AmountDisplayOpts -> Bool
displayThousandsSep  :: Bool       -- ^ Whether to display digit group marks (eg thousands separators)
  , AmountDisplayOpts -> Bool
displayAddDecimalMark  :: Bool     -- ^ Whether to add a trailing decimal mark when there are no decimal digits 
                                       --   and there are digit group marks, to disambiguate
  , AmountDisplayOpts -> Bool
displayColour        :: Bool       -- ^ Whether to colourise negative Amounts.
  , AmountDisplayOpts -> Bool
displayOneLine       :: Bool       -- ^ Whether to display on one line.
  , AmountDisplayOpts -> Maybe Int
displayMinWidth      :: Maybe Int  -- ^ Minimum width to pad to
  , AmountDisplayOpts -> Maybe Int
displayMaxWidth      :: Maybe Int  -- ^ Maximum width to clip to
  -- | Display amounts in this order (without the commodity symbol) and display
  -- a 0 in case a corresponding commodity does not exist
  , AmountDisplayOpts -> Maybe [CommoditySymbol]
displayOrder         :: Maybe [CommoditySymbol]
  } deriving (Int -> AmountDisplayOpts -> ShowS
[AmountDisplayOpts] -> ShowS
AmountDisplayOpts -> [Char]
forall a.
(Int -> a -> ShowS) -> (a -> [Char]) -> ([a] -> ShowS) -> Show a
showList :: [AmountDisplayOpts] -> ShowS
$cshowList :: [AmountDisplayOpts] -> ShowS
show :: AmountDisplayOpts -> [Char]
$cshow :: AmountDisplayOpts -> [Char]
showsPrec :: Int -> AmountDisplayOpts -> ShowS
$cshowsPrec :: Int -> AmountDisplayOpts -> ShowS
Show)

-- | By default, display Amount and MixedAmount using @noColour@ amount display options.
instance Default AmountDisplayOpts where def :: AmountDisplayOpts
def = AmountDisplayOpts
noColour

-- | Display amounts without colour, and with various other defaults.
noColour :: AmountDisplayOpts
noColour :: AmountDisplayOpts
noColour = AmountDisplayOpts { displayPrice :: Bool
displayPrice         = Bool
True
                             , displayColour :: Bool
displayColour        = Bool
False
                             , displayZeroCommodity :: Bool
displayZeroCommodity = Bool
False
                             , displayThousandsSep :: Bool
displayThousandsSep  = Bool
True
                             , displayAddDecimalMark :: Bool
displayAddDecimalMark = Bool
False
                             , displayOneLine :: Bool
displayOneLine       = Bool
False
                             , displayMinWidth :: Maybe Int
displayMinWidth      = forall a. a -> Maybe a
Just Int
0
                             , displayMaxWidth :: Maybe Int
displayMaxWidth      = forall a. Maybe a
Nothing
                             , displayOrder :: Maybe [CommoditySymbol]
displayOrder         = forall a. Maybe a
Nothing
                             }

-- | Display Amount and MixedAmount with no prices.
noPrice :: AmountDisplayOpts
noPrice :: AmountDisplayOpts
noPrice = forall a. Default a => a
def{displayPrice :: Bool
displayPrice=Bool
False}

-- | Display Amount and MixedAmount on one line with no prices.
oneLine :: AmountDisplayOpts
oneLine :: AmountDisplayOpts
oneLine = forall a. Default a => a
def{displayOneLine :: Bool
displayOneLine=Bool
True, displayPrice :: Bool
displayPrice=Bool
False}

-- | Display Amount and MixedAmount in a form suitable for CSV output.
csvDisplay :: AmountDisplayOpts
csvDisplay :: AmountDisplayOpts
csvDisplay = AmountDisplayOpts
oneLine{displayThousandsSep :: Bool
displayThousandsSep=Bool
False}

-------------------------------------------------------------------------------
-- Amount arithmetic

instance Num Amount where
    abs :: Amount -> Amount
abs a :: Amount
a@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
q}    = Amount
a{aquantity :: Quantity
aquantity=forall a. Num a => a -> a
abs Quantity
q}
    signum :: Amount -> Amount
signum a :: Amount
a@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
q} = Amount
a{aquantity :: Quantity
aquantity=forall a. Num a => a -> a
signum Quantity
q}
    fromInteger :: Integer -> Amount
fromInteger Integer
i                = Amount
nullamt{aquantity :: Quantity
aquantity=forall a. Num a => Integer -> a
fromInteger Integer
i}
    negate :: Amount -> Amount
negate                       = (Quantity -> Quantity) -> Amount -> Amount
transformAmount forall a. Num a => a -> a
negate
    + :: Amount -> Amount -> Amount
(+)                          = (Quantity -> Quantity -> Quantity) -> Amount -> Amount -> Amount
similarAmountsOp forall a. Num a => a -> a -> a
(+)
    (-)                          = (Quantity -> Quantity -> Quantity) -> Amount -> Amount -> Amount
similarAmountsOp (-)
    * :: Amount -> Amount -> Amount
(*)                          = (Quantity -> Quantity -> Quantity) -> Amount -> Amount -> Amount
similarAmountsOp forall a. Num a => a -> a -> a
(*)

-- | The empty simple amount - a zero with no commodity symbol or cost
-- and the default amount display style.
nullamt :: Amount
nullamt :: Amount
nullamt = Amount{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
"", aquantity :: Quantity
aquantity=Quantity
0, aprice :: Maybe AmountPrice
aprice=forall a. Maybe a
Nothing, astyle :: AmountStyle
astyle=AmountStyle
amountstyle}

-- | A special amount used as a marker, meaning
-- "no explicit amount provided here, infer it when needed".
-- It is nullamt with commodity symbol "AUTO".
missingamt :: Amount
missingamt :: Amount
missingamt = Amount
nullamt{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
"AUTO"}

-- Handy amount constructors for tests.
-- usd/eur/gbp round their argument to a whole number of pennies/cents.
-- XXX these are a bit clashy
num :: Quantity -> Amount
num Quantity
n = Amount
nullamt{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
"",  aquantity :: Quantity
aquantity=Quantity
n}
hrs :: Quantity -> Amount
hrs Quantity
n = Amount
nullamt{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
"h", aquantity :: Quantity
aquantity=Quantity
n,           astyle :: AmountStyle
astyle=AmountStyle
amountstyle{asprecision :: AmountPrecision
asprecision=Word8 -> AmountPrecision
Precision Word8
2, ascommodityside :: Side
ascommodityside=Side
R}}
usd :: Quantity -> Amount
usd Quantity
n = Amount
nullamt{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
"$", aquantity :: Quantity
aquantity=forall i. Integral i => Word8 -> DecimalRaw i -> DecimalRaw i
roundTo Word8
2 Quantity
n, astyle :: AmountStyle
astyle=AmountStyle
amountstyle{asprecision :: AmountPrecision
asprecision=Word8 -> AmountPrecision
Precision Word8
2}}
eur :: Quantity -> Amount
eur Quantity
n = Amount
nullamt{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
"€", aquantity :: Quantity
aquantity=forall i. Integral i => Word8 -> DecimalRaw i -> DecimalRaw i
roundTo Word8
2 Quantity
n, astyle :: AmountStyle
astyle=AmountStyle
amountstyle{asprecision :: AmountPrecision
asprecision=Word8 -> AmountPrecision
Precision Word8
2}}
gbp :: Quantity -> Amount
gbp Quantity
n = Amount
nullamt{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
"£", aquantity :: Quantity
aquantity=forall i. Integral i => Word8 -> DecimalRaw i -> DecimalRaw i
roundTo Word8
2 Quantity
n, astyle :: AmountStyle
astyle=AmountStyle
amountstyle{asprecision :: AmountPrecision
asprecision=Word8 -> AmountPrecision
Precision Word8
2}}
per :: Quantity -> Amount
per Quantity
n = Amount
nullamt{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
"%", aquantity :: Quantity
aquantity=Quantity
n,           astyle :: AmountStyle
astyle=AmountStyle
amountstyle{asprecision :: AmountPrecision
asprecision=Word8 -> AmountPrecision
Precision Word8
1, ascommodityside :: Side
ascommodityside=Side
R, ascommodityspaced :: Bool
ascommodityspaced=Bool
True}}
Amount
amt at :: Amount -> Amount -> Amount
`at` Amount
priceamt = Amount
amt{aprice :: Maybe AmountPrice
aprice=forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount -> AmountPrice
UnitPrice Amount
priceamt}
Amount
amt @@ :: Amount -> Amount -> Amount
@@ Amount
priceamt = Amount
amt{aprice :: Maybe AmountPrice
aprice=forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount -> AmountPrice
TotalPrice Amount
priceamt}

-- | Apply a binary arithmetic operator to two amounts, which should
-- be in the same commodity if non-zero (warning, this is not checked).
-- A zero result keeps the commodity of the second amount.
-- The result's display style is that of the second amount, with
-- precision set to the highest of either amount.
-- Prices are ignored and discarded.
-- Remember: the caller is responsible for ensuring both amounts have the same commodity.
similarAmountsOp :: (Quantity -> Quantity -> Quantity) -> Amount -> Amount -> Amount
similarAmountsOp :: (Quantity -> Quantity -> Quantity) -> Amount -> Amount -> Amount
similarAmountsOp Quantity -> Quantity -> Quantity
op Amount{acommodity :: Amount -> CommoditySymbol
acommodity=CommoditySymbol
_,  aquantity :: Amount -> Quantity
aquantity=Quantity
q1, astyle :: Amount -> AmountStyle
astyle=AmountStyle{asprecision :: AmountStyle -> AmountPrecision
asprecision=AmountPrecision
p1}}
                    Amount{acommodity :: Amount -> CommoditySymbol
acommodity=CommoditySymbol
c2, aquantity :: Amount -> Quantity
aquantity=Quantity
q2, astyle :: Amount -> AmountStyle
astyle=s2 :: AmountStyle
s2@AmountStyle{asprecision :: AmountStyle -> AmountPrecision
asprecision=AmountPrecision
p2}} =
   -- trace ("a1:"++showAmountDebug a1) $ trace ("a2:"++showAmountDebug a2) $ traceWith (("= :"++).showAmountDebug)
   Amount
nullamt{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
c2, aquantity :: Quantity
aquantity=Quantity
q1 Quantity -> Quantity -> Quantity
`op` Quantity
q2, astyle :: AmountStyle
astyle=AmountStyle
s2{asprecision :: AmountPrecision
asprecision=forall a. Ord a => a -> a -> a
max AmountPrecision
p1 AmountPrecision
p2}}
  --  c1==c2 || q1==0 || q2==0 =
  --  otherwise = error "tried to do simple arithmetic with amounts in different commodities"

-- | Convert an amount to the specified commodity, ignoring and discarding
-- any assigned prices and assuming an exchange rate of 1.
amountWithCommodity :: CommoditySymbol -> Amount -> Amount
amountWithCommodity :: CommoditySymbol -> Amount -> Amount
amountWithCommodity CommoditySymbol
c Amount
a = Amount
a{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
c, aprice :: Maybe AmountPrice
aprice=forall a. Maybe a
Nothing}

-- | Convert a amount to its "cost" or "selling price" in another commodity,
-- using its attached transaction price if it has one.  Notes:
--
-- - price amounts must be MixedAmounts with exactly one component Amount
--   (or there will be a runtime error XXX)
--
-- - price amounts should be positive in the Journal
--   (though this is currently not enforced)
amountCost :: Amount -> Amount
amountCost :: Amount -> Amount
amountCost a :: Amount
a@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
q, aprice :: Amount -> Maybe AmountPrice
aprice=Maybe AmountPrice
mp} =
    case Maybe AmountPrice
mp of
      Maybe AmountPrice
Nothing                                  -> Amount
a
      Just (UnitPrice  p :: Amount
p@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
pq}) -> Amount
p{aquantity :: Quantity
aquantity=Quantity
pq forall a. Num a => a -> a -> a
* Quantity
q}
      Just (TotalPrice p :: Amount
p@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
pq}) -> Amount
p{aquantity :: Quantity
aquantity=Quantity
pq}

-- | Apply a function to an amount's quantity (and its total price, if it has one).
transformAmount :: (Quantity -> Quantity) -> Amount -> Amount
transformAmount :: (Quantity -> Quantity) -> Amount -> Amount
transformAmount Quantity -> Quantity
f a :: Amount
a@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
q,aprice :: Amount -> Maybe AmountPrice
aprice=Maybe AmountPrice
p} = Amount
a{aquantity :: Quantity
aquantity=Quantity -> Quantity
f Quantity
q, aprice :: Maybe AmountPrice
aprice=AmountPrice -> AmountPrice
f' forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe AmountPrice
p}
  where
    f' :: AmountPrice -> AmountPrice
f' (TotalPrice a1 :: Amount
a1@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
pq}) = Amount -> AmountPrice
TotalPrice Amount
a1{aquantity :: Quantity
aquantity = Quantity -> Quantity
f Quantity
pq}
    f' AmountPrice
p' = AmountPrice
p'

-- | Divide an amount's quantity (and total cost, if any) by some number.
divideAmount :: Quantity -> Amount -> Amount
divideAmount :: Quantity -> Amount -> Amount
divideAmount Quantity
n = (Quantity -> Quantity) -> Amount -> Amount
transformAmount (forall a. Fractional a => a -> a -> a
/Quantity
n)

-- | Multiply an amount's quantity (and its total price, if it has one) by a constant.
multiplyAmount :: Quantity -> Amount -> Amount
multiplyAmount :: Quantity -> Amount -> Amount
multiplyAmount Quantity
n = (Quantity -> Quantity) -> Amount -> Amount
transformAmount (forall a. Num a => a -> a -> a
*Quantity
n)

-- | Invert an amount (replace its quantity q with 1/q).
-- (Its cost if any is not changed, currently.)
invertAmount :: Amount -> Amount
invertAmount :: Amount -> Amount
invertAmount a :: Amount
a@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
q} = Amount
a{aquantity :: Quantity
aquantity=Quantity
1forall a. Fractional a => a -> a -> a
/Quantity
q}

-- | Is this amount negative ? The price is ignored.
isNegativeAmount :: Amount -> Bool
isNegativeAmount :: Amount -> Bool
isNegativeAmount Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
q} = Quantity
q forall a. Ord a => a -> a -> Bool
< Quantity
0

-- | Round an Amount's Quantity (internally) to match its display precision. 
-- If that is unset or NaturalPrecision, this does nothing.
amountRoundedQuantity :: Amount -> Quantity
amountRoundedQuantity :: Amount -> Quantity
amountRoundedQuantity Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
q, astyle :: Amount -> AmountStyle
astyle=AmountStyle{asprecision :: AmountStyle -> AmountPrecision
asprecision=AmountPrecision
mp}} = case AmountPrecision
mp of
    AmountPrecision
NaturalPrecision -> Quantity
q
    Precision Word8
p      -> forall i. Integral i => Word8 -> DecimalRaw i -> DecimalRaw i
roundTo Word8
p Quantity
q

-- | Apply a test to both an Amount and its total price, if it has one.
testAmountAndTotalPrice :: (Amount -> Bool) -> Amount -> Bool
testAmountAndTotalPrice :: (Amount -> Bool) -> Amount -> Bool
testAmountAndTotalPrice Amount -> Bool
f Amount
amt = case Amount -> Maybe AmountPrice
aprice Amount
amt of
    Just (TotalPrice Amount
price) -> Amount -> Bool
f Amount
amt Bool -> Bool -> Bool
&& Amount -> Bool
f Amount
price
    Maybe AmountPrice
_                       -> Amount -> Bool
f Amount
amt

-- | Do this Amount and (and its total price, if it has one) appear to be zero
-- when rendered with its display precision ?
-- The display precision should usually have a specific value here;
-- if unset, it will be treated like NaturalPrecision.
amountLooksZero :: Amount -> Bool
amountLooksZero :: Amount -> Bool
amountLooksZero = (Amount -> Bool) -> Amount -> Bool
testAmountAndTotalPrice Amount -> Bool
looksZero
  where
    looksZero :: Amount -> Bool
looksZero Amount{aquantity :: Amount -> Quantity
aquantity=Decimal Word8
e Integer
q, astyle :: Amount -> AmountStyle
astyle=AmountStyle{asprecision :: AmountStyle -> AmountPrecision
asprecision=AmountPrecision
p}} = case AmountPrecision
p of
        Precision Word8
d      -> if Word8
e forall a. Ord a => a -> a -> Bool
> Word8
d then forall a. Num a => a -> a
abs Integer
q forall a. Ord a => a -> a -> Bool
<= Integer
5forall a. Num a => a -> a -> a
*Integer
10forall a b. (Num a, Integral b) => a -> b -> a
^(Word8
eforall a. Num a => a -> a -> a
-Word8
dforall a. Num a => a -> a -> a
-Word8
1) else Integer
q forall a. Eq a => a -> a -> Bool
== Integer
0
        AmountPrecision
NaturalPrecision -> Integer
q forall a. Eq a => a -> a -> Bool
== Integer
0

-- | Is this Amount (and its total price, if it has one) exactly zero, ignoring its display precision ?
amountIsZero :: Amount -> Bool
amountIsZero :: Amount -> Bool
amountIsZero = (Amount -> Bool) -> Amount -> Bool
testAmountAndTotalPrice (\Amount{aquantity :: Amount -> Quantity
aquantity=Decimal Word8
_ Integer
q} -> Integer
q forall a. Eq a => a -> a -> Bool
== Integer
0)

-- | Does this amount's internal Decimal representation have the
-- maximum number of digits, suggesting that it probably is
-- representing an infinite decimal ?
amountHasMaxDigits :: Amount -> Bool
amountHasMaxDigits :: Amount -> Bool
amountHasMaxDigits = (forall a. Ord a => a -> a -> Bool
>= Int
255) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Int
numDigitsInteger forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall i. DecimalRaw i -> i
decimalMantissa forall b c a. (b -> c) -> (a -> b) -> a -> c
. Amount -> Quantity
aquantity
-- XXX this seems not always right. Eg:
-- ghci> let n = 100 / (3.0 :: Decimal)
-- decimalPlaces n
-- 255
-- numDigitsInteger $ decimalMantissa n
-- 257


-- | Set an amount's display precision, flipped.
withPrecision :: Amount -> AmountPrecision -> Amount
withPrecision :: Amount -> AmountPrecision -> Amount
withPrecision = forall a b c. (a -> b -> c) -> b -> a -> c
flip AmountPrecision -> Amount -> Amount
amountSetPrecision

-- | Set an amount's display precision.
amountSetPrecision :: AmountPrecision -> Amount -> Amount
amountSetPrecision :: AmountPrecision -> Amount -> Amount
amountSetPrecision AmountPrecision
p a :: Amount
a@Amount{astyle :: Amount -> AmountStyle
astyle=AmountStyle
s} = Amount
a{astyle :: AmountStyle
astyle=AmountStyle
s{asprecision :: AmountPrecision
asprecision=AmountPrecision
p}}

-- | Ensure an amount's display precision is at least the given minimum precision.
-- Always sets an explicit Precision.
amountSetPrecisionMin :: Word8 -> Amount -> Amount
amountSetPrecisionMin :: Word8 -> Amount -> Amount
amountSetPrecisionMin Word8
minp Amount
a = AmountPrecision -> Amount -> Amount
amountSetPrecision AmountPrecision
p Amount
a
  where p :: AmountPrecision
p = Word8 -> AmountPrecision
Precision forall a b. (a -> b) -> a -> b
$ forall a. Ord a => a -> a -> a
max Word8
minp (Amount -> Word8
amountDisplayPrecision Amount
a)

-- | Ensure an amount's display precision is at most the given maximum precision.
-- Always sets an explicit Precision.
amountSetPrecisionMax :: Word8 -> Amount -> Amount
amountSetPrecisionMax :: Word8 -> Amount -> Amount
amountSetPrecisionMax Word8
maxp Amount
a = AmountPrecision -> Amount -> Amount
amountSetPrecision AmountPrecision
p Amount
a
  where p :: AmountPrecision
p = Word8 -> AmountPrecision
Precision forall a b. (a -> b) -> a -> b
$ forall a. Ord a => a -> a -> a
min Word8
maxp (Amount -> Word8
amountDisplayPrecision Amount
a)

-- | Increase an amount's display precision, if needed, to enough decimal places
-- to show it exactly (showing all significant decimal digits, without trailing zeros).
-- If the amount's display precision is unset, it will be treated as precision 0.
amountSetFullPrecision :: Amount -> Amount
amountSetFullPrecision :: Amount -> Amount
amountSetFullPrecision Amount
a = AmountPrecision -> Amount -> Amount
amountSetPrecision AmountPrecision
p Amount
a
  where
    p :: AmountPrecision
p                = forall a. Ord a => a -> a -> a
max AmountPrecision
displayprecision AmountPrecision
naturalprecision
    displayprecision :: AmountPrecision
displayprecision = AmountStyle -> AmountPrecision
asprecision forall a b. (a -> b) -> a -> b
$ Amount -> AmountStyle
astyle Amount
a
    naturalprecision :: AmountPrecision
naturalprecision = Word8 -> AmountPrecision
Precision forall a b. (a -> b) -> a -> b
$ Amount -> Word8
amountInternalPrecision Amount
a
-- XXX Is that last sentence correct ?
-- max (Precision n) NaturalPrecision is NaturalPrecision.
-- Would this work instead ?
-- amountSetFullPrecision a = amountSetPrecision (Precision p) a
--   where p = max (amountDisplayPrecision a) (amountInternalPrecision a)


-- | We often want to display "infinite decimal" amounts rounded to some readable
-- number of digits, while still displaying amounts with a large "non infinite" number
-- of decimal digits (eg, 100 or 200 digits) in full.
-- This helper is like amountSetFullPrecision, but with some refinements:
-- 1. If the internal precision is the maximum (255), indicating an infinite decimal, 
-- the display precision is set to a smaller hard-coded default (8).
-- 2. A maximum display precision can be specified, setting a hard upper limit.
-- This function always sets an explicit display precision (ie, Precision n).
amountSetFullPrecisionOr :: Maybe Word8 -> Amount -> Amount
amountSetFullPrecisionOr :: Maybe Word8 -> Amount -> Amount
amountSetFullPrecisionOr Maybe Word8
mmaxp Amount
a = AmountPrecision -> Amount -> Amount
amountSetPrecision (Word8 -> AmountPrecision
Precision Word8
p2) Amount
a
  where
    p1 :: Word8
p1 = if -- dbg0 "maxdigits" $
            Amount -> Bool
amountHasMaxDigits Amount
a then Word8
defaultMaxPrecision else forall a. Ord a => a -> a -> a
max Word8
disp Word8
intp
      -- & dbg0 "p1"
      where
        intp :: Word8
intp = Amount -> Word8
amountInternalPrecision Amount
a
        disp :: Word8
disp = Amount -> Word8
amountDisplayPrecision Amount
a
    p2 :: Word8
p2 = forall b a. b -> (a -> b) -> Maybe a -> b
maybe Word8
p1 (forall a. Ord a => a -> a -> a
min Word8
p1) Maybe Word8
mmaxp
      -- & dbg0 "p2"

-- | The fallback display precision used when showing amounts
-- representing an infinite decimal.
defaultMaxPrecision :: Word8
defaultMaxPrecision :: Word8
defaultMaxPrecision = Word8
8

-- | How many internal decimal digits are stored for this amount ?
amountInternalPrecision :: Amount -> Word8
amountInternalPrecision :: Amount -> Word8
amountInternalPrecision = forall i. DecimalRaw i -> Word8
decimalPlaces forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall i. Integral i => DecimalRaw i -> DecimalRaw i
normalizeDecimal forall b c a. (b -> c) -> (a -> b) -> a -> c
. Amount -> Quantity
aquantity

-- | How many decimal digits will be displayed for this amount ?
amountDisplayPrecision :: Amount -> Word8
amountDisplayPrecision :: Amount -> Word8
amountDisplayPrecision Amount
a =
  case AmountStyle -> AmountPrecision
asprecision forall a b. (a -> b) -> a -> b
$ Amount -> AmountStyle
astyle Amount
a of
    Precision Word8
n      -> Word8
n
    AmountPrecision
NaturalPrecision -> Amount -> Word8
amountInternalPrecision Amount
a

-- | Set an amount's internal decimal precision as well as its display precision.
-- This rounds or pads its Decimal quantity to the specified number of decimal places.
-- Rounding is done with Data.Decimal's default roundTo function:
-- "If the value ends in 5 then it is rounded to the nearest even value (Banker's Rounding)".
setAmountInternalPrecision :: Word8 -> Amount -> Amount
setAmountInternalPrecision :: Word8 -> Amount -> Amount
setAmountInternalPrecision Word8
p a :: Amount
a@Amount{ aquantity :: Amount -> Quantity
aquantity=Quantity
q, astyle :: Amount -> AmountStyle
astyle=AmountStyle
s } = Amount
a{
   aquantity :: Quantity
aquantity=forall i. Integral i => Word8 -> DecimalRaw i -> DecimalRaw i
roundTo Word8
p Quantity
q
  ,astyle :: AmountStyle
astyle=AmountStyle
s{asprecision :: AmountPrecision
asprecision=Word8 -> AmountPrecision
Precision Word8
p}
  }

-- | setAmountInternalPrecision with arguments flipped.
withInternalPrecision :: Amount -> Word8 -> Amount
withInternalPrecision :: Amount -> Word8 -> Amount
withInternalPrecision = forall a b c. (a -> b -> c) -> b -> a -> c
flip Word8 -> Amount -> Amount
setAmountInternalPrecision

-- Amount display styles

-- v1
{-# DEPRECATED canonicaliseAmount "please use styleAmounts instead" #-}
canonicaliseAmount :: M.Map CommoditySymbol AmountStyle -> Amount -> Amount
canonicaliseAmount :: Map CommoditySymbol AmountStyle -> Amount -> Amount
canonicaliseAmount = forall a. HasAmounts a => Map CommoditySymbol AmountStyle -> a -> a
styleAmounts

-- v2
{-# DEPRECATED styleAmount "please use styleAmounts instead" #-}
styleAmount :: M.Map CommoditySymbol AmountStyle -> Amount -> Amount
styleAmount :: Map CommoditySymbol AmountStyle -> Amount -> Amount
styleAmount = forall a. HasAmounts a => Map CommoditySymbol AmountStyle -> a -> a
styleAmounts

-- v3
{-# DEPRECATED amountSetStyles "please use styleAmounts instead" #-}
amountSetStyles :: M.Map CommoditySymbol AmountStyle -> Amount -> Amount
amountSetStyles :: Map CommoditySymbol AmountStyle -> Amount -> Amount
amountSetStyles = forall a. HasAmounts a => Map CommoditySymbol AmountStyle -> a -> a
styleAmounts

-- v4
instance HasAmounts Amount where
  -- | Given some commodity display styles, find and apply the appropriate one to this amount,
  -- and its cost amount if any (and stop; we assume costs don't have costs).
  -- Display precision will be applied (or not) as specified by the style's rounding strategy,
  -- except that costs' precision is never changed (costs are often recorded inexactly,
  -- so we don't want to imply greater precision than they were recorded with).
  -- If no style is found for an amount, it is left unchanged.
  styleAmounts :: Map CommoditySymbol AmountStyle -> Amount -> Amount
styleAmounts Map CommoditySymbol AmountStyle
styles a :: Amount
a@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
qty, acommodity :: Amount -> CommoditySymbol
acommodity=CommoditySymbol
comm, astyle :: Amount -> AmountStyle
astyle=AmountStyle
oldstyle, aprice :: Amount -> Maybe AmountPrice
aprice=Maybe AmountPrice
mcost0} =
    Amount
a{astyle :: AmountStyle
astyle=AmountStyle
newstyle, aprice :: Maybe AmountPrice
aprice=Maybe AmountPrice
mcost1}
    where
      newstyle :: AmountStyle
newstyle = Bool -> Quantity -> AmountStyle -> CommoditySymbol -> AmountStyle
mknewstyle Bool
False Quantity
qty AmountStyle
oldstyle CommoditySymbol
comm 

      mcost1 :: Maybe AmountPrice
mcost1 = case Maybe AmountPrice
mcost0 of
        Maybe AmountPrice
Nothing -> forall a. Maybe a
Nothing
        Just (UnitPrice  ca :: Amount
ca@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
cq, astyle :: Amount -> AmountStyle
astyle=AmountStyle
cs, acommodity :: Amount -> CommoditySymbol
acommodity=CommoditySymbol
ccomm}) -> forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount -> AmountPrice
UnitPrice  Amount
ca{astyle :: AmountStyle
astyle=Bool -> Quantity -> AmountStyle -> CommoditySymbol -> AmountStyle
mknewstyle Bool
True Quantity
cq AmountStyle
cs CommoditySymbol
ccomm}
        Just (TotalPrice ca :: Amount
ca@Amount{aquantity :: Amount -> Quantity
aquantity=Quantity
cq, astyle :: Amount -> AmountStyle
astyle=AmountStyle
cs, acommodity :: Amount -> CommoditySymbol
acommodity=CommoditySymbol
ccomm}) -> forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount -> AmountPrice
TotalPrice Amount
ca{astyle :: AmountStyle
astyle=Bool -> Quantity -> AmountStyle -> CommoditySymbol -> AmountStyle
mknewstyle Bool
True Quantity
cq AmountStyle
cs CommoditySymbol
ccomm}

      mknewstyle :: Bool -> Quantity -> AmountStyle -> CommoditySymbol -> AmountStyle
      mknewstyle :: Bool -> Quantity -> AmountStyle -> CommoditySymbol -> AmountStyle
mknewstyle Bool
iscost Quantity
oldq AmountStyle
olds CommoditySymbol
com =
        case forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup CommoditySymbol
com Map CommoditySymbol AmountStyle
styles of
          Just AmountStyle
s  -> 
            -- dbg0 "new      style" $ 
            Bool -> Quantity -> AmountStyle -> AmountStyle -> AmountStyle
amountStyleApplyWithRounding Bool
iscost Quantity
oldq 
              (
                -- dbg0 "applying style"
                AmountStyle
s)
              (
                -- dbg0 "old      style"
                AmountStyle
olds)
          Maybe AmountStyle
Nothing -> AmountStyle
olds

-- AmountStyle helpers

-- | Replace one AmountStyle with another, but don't just replace the display precision;
-- update that in one of several ways as selected by the new style's "rounding strategy":
--
-- NoRounding - keep the precision unchanged
--
-- SoftRounding -
--
--  if either precision is NaturalPrecision, use NaturalPrecision;
--
--  if the new precision is greater than the old, use the new (adds decimal zeros);
--
--  if the new precision is less than the old, use as close to the new as we can get
--    without dropping (more) non-zero digits (drops decimal zeros).
--
--  for a cost amount, keep the precision unchanged
--
-- HardRounding -
--
--  for a posting amount, use the new precision (may truncate significant digits);
--
--  for a cost amount, keep the precision unchanged
--
-- AllRounding -
--
--  for both posting and cost amounts, do hard rounding.
--
-- Arguments:
--
--  whether this style is for a posting amount or a cost amount,
--
--  the amount's decimal quantity (for inspecting its internal representation), 
--
--  the new style, 
--
--  the old style.
--
amountStyleApplyWithRounding :: Bool -> Quantity -> AmountStyle -> AmountStyle -> AmountStyle
amountStyleApplyWithRounding :: Bool -> Quantity -> AmountStyle -> AmountStyle -> AmountStyle
amountStyleApplyWithRounding Bool
iscost Quantity
q news :: AmountStyle
news@AmountStyle{asprecision :: AmountStyle -> AmountPrecision
asprecision=AmountPrecision
newp, asrounding :: AmountStyle -> Rounding
asrounding=Rounding
newr} AmountStyle{asprecision :: AmountStyle -> AmountPrecision
asprecision=AmountPrecision
oldp} =
  case Rounding
newr of
    Rounding
NoRounding   -> AmountStyle
news{asprecision :: AmountPrecision
asprecision=AmountPrecision
oldp}
    Rounding
SoftRounding -> AmountStyle
news{asprecision :: AmountPrecision
asprecision=if Bool
iscost then AmountPrecision
oldp else AmountPrecision
newp'}
      where
        newp' :: AmountPrecision
newp' = case (AmountPrecision
newp, AmountPrecision
oldp) of
          (Precision Word8
new, Precision Word8
old) ->
            if Word8
new forall a. Ord a => a -> a -> Bool
>= Word8
old
            then Word8 -> AmountPrecision
Precision Word8
new
            else Word8 -> AmountPrecision
Precision forall a b. (a -> b) -> a -> b
$ forall a. Ord a => a -> a -> a
max (forall a. Ord a => a -> a -> a
min Word8
old Word8
internal) Word8
new
              where internal :: Word8
internal = forall i. DecimalRaw i -> Word8
decimalPlaces forall a b. (a -> b) -> a -> b
$ forall i. Integral i => DecimalRaw i -> DecimalRaw i
normalizeDecimal Quantity
q
          (AmountPrecision, AmountPrecision)
_ -> AmountPrecision
NaturalPrecision
    Rounding
HardRounding -> AmountStyle
news{asprecision :: AmountPrecision
asprecision=if Bool
iscost then AmountPrecision
oldp else AmountPrecision
newp}
    Rounding
AllRounding  -> AmountStyle
news

-- | Set this amount style's rounding strategy when being applied to amounts.
amountStyleSetRounding :: Rounding -> AmountStyle -> AmountStyle
amountStyleSetRounding :: Rounding -> AmountStyle -> AmountStyle
amountStyleSetRounding Rounding
r AmountStyle
as = AmountStyle
as{asrounding :: Rounding
asrounding=Rounding
r}

amountStylesSetRounding :: Rounding -> M.Map CommoditySymbol AmountStyle -> M.Map CommoditySymbol AmountStyle
amountStylesSetRounding :: Rounding
-> Map CommoditySymbol AmountStyle
-> Map CommoditySymbol AmountStyle
amountStylesSetRounding Rounding
r = forall a b k. (a -> b) -> Map k a -> Map k b
M.map (Rounding -> AmountStyle -> AmountStyle
amountStyleSetRounding Rounding
r) 

-- | Default amount style
amountstyle :: AmountStyle
amountstyle = Side
-> Bool
-> Maybe DigitGroupStyle
-> Maybe Char
-> AmountPrecision
-> Rounding
-> AmountStyle
AmountStyle Side
L Bool
False forall a. Maybe a
Nothing (forall a. a -> Maybe a
Just Char
'.') (Word8 -> AmountPrecision
Precision Word8
0) Rounding
NoRounding

-- | Reset this amount's display style to the default.
amountUnstyled :: Amount -> Amount
amountUnstyled :: Amount -> Amount
amountUnstyled Amount
a = Amount
a{astyle :: AmountStyle
astyle=AmountStyle
amountstyle}

-- | Set (or clear) an amount's display decimal point.
setAmountDecimalPoint :: Maybe Char -> Amount -> Amount
setAmountDecimalPoint :: Maybe Char -> Amount -> Amount
setAmountDecimalPoint Maybe Char
mc a :: Amount
a@Amount{ astyle :: Amount -> AmountStyle
astyle=AmountStyle
s } = Amount
a{ astyle :: AmountStyle
astyle=AmountStyle
s{asdecimalmark :: Maybe Char
asdecimalmark=Maybe Char
mc} }

-- | Set (or clear) an amount's display decimal point, flipped.
withDecimalPoint :: Amount -> Maybe Char -> Amount
withDecimalPoint :: Amount -> Maybe Char -> Amount
withDecimalPoint = forall a b c. (a -> b -> c) -> b -> a -> c
flip Maybe Char -> Amount -> Amount
setAmountDecimalPoint

-- Amount rendering

-- | Strip all prices from an Amount
amountStripPrices :: Amount -> Amount
amountStripPrices :: Amount -> Amount
amountStripPrices Amount
a = Amount
a{aprice :: Maybe AmountPrice
aprice=forall a. Maybe a
Nothing}

showAmountPrice :: Amount -> WideBuilder
showAmountPrice :: Amount -> WideBuilder
showAmountPrice Amount
amt = case Amount -> Maybe AmountPrice
aprice Amount
amt of
    Maybe AmountPrice
Nothing              -> forall a. Monoid a => a
mempty
    Just (UnitPrice  Amount
pa) -> Builder -> Int -> WideBuilder
WideBuilder ([Char] -> Builder
TB.fromString [Char]
" @ ")  Int
3 forall a. Semigroup a => a -> a -> a
<> AmountDisplayOpts -> Amount -> WideBuilder
showAmountB AmountDisplayOpts
noColour{displayZeroCommodity :: Bool
displayZeroCommodity=Bool
True} Amount
pa
    Just (TotalPrice Amount
pa) -> Builder -> Int -> WideBuilder
WideBuilder ([Char] -> Builder
TB.fromString [Char]
" @@ ") Int
4 forall a. Semigroup a => a -> a -> a
<> AmountDisplayOpts -> Amount -> WideBuilder
showAmountB AmountDisplayOpts
noColour{displayZeroCommodity :: Bool
displayZeroCommodity=Bool
True} (Amount -> Amount
sign Amount
pa)
  where sign :: Amount -> Amount
sign = if Amount -> Quantity
aquantity Amount
amt forall a. Ord a => a -> a -> Bool
< Quantity
0 then forall a. Num a => a -> a
negate else forall a. a -> a
id

showAmountPriceDebug :: Maybe AmountPrice -> String
showAmountPriceDebug :: Maybe AmountPrice -> [Char]
showAmountPriceDebug Maybe AmountPrice
Nothing                = [Char]
""
showAmountPriceDebug (Just (UnitPrice Amount
pa))  = [Char]
" @ "  forall a. [a] -> [a] -> [a]
++ Amount -> [Char]
showAmountDebug Amount
pa
showAmountPriceDebug (Just (TotalPrice Amount
pa)) = [Char]
" @@ " forall a. [a] -> [a] -> [a]
++ Amount -> [Char]
showAmountDebug Amount
pa

-- | Get the string representation of an amount, based on its
-- commodity's display settings. String representations equivalent to
-- zero are converted to just \"0\". The special "missing" amount is
-- displayed as the empty string.
--
-- > showAmount = wbUnpack . showAmountB noColour
showAmount :: Amount -> String
showAmount :: Amount -> [Char]
showAmount = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> Amount -> WideBuilder
showAmountB AmountDisplayOpts
noColour

-- | General function to generate a WideBuilder for an Amount, according the
-- supplied AmountDisplayOpts. This is the main function to use for showing
-- Amounts, constructing a builder; it can then be converted to a Text with
-- wbToText, or to a String with wbUnpack.
-- Some special cases:
--
-- * The special "missing" amount is displayed as the empty string. 
--
-- * If an amount is showing digit group separators but no decimal places,
--   we force showing a decimal mark (with nothing after it) to make
--   it easier to parse correctly.
--
showAmountB :: AmountDisplayOpts -> Amount -> WideBuilder
showAmountB :: AmountDisplayOpts -> Amount -> WideBuilder
showAmountB AmountDisplayOpts
_ Amount{acommodity :: Amount -> CommoditySymbol
acommodity=CommoditySymbol
"AUTO"} = forall a. Monoid a => a
mempty
showAmountB
  AmountDisplayOpts{Bool
displayPrice :: Bool
displayPrice :: AmountDisplayOpts -> Bool
displayPrice, Bool
displayColour :: Bool
displayColour :: AmountDisplayOpts -> Bool
displayColour, Bool
displayZeroCommodity :: Bool
displayZeroCommodity :: AmountDisplayOpts -> Bool
displayZeroCommodity, 
    Bool
displayThousandsSep :: Bool
displayThousandsSep :: AmountDisplayOpts -> Bool
displayThousandsSep, Bool
displayAddDecimalMark :: Bool
displayAddDecimalMark :: AmountDisplayOpts -> Bool
displayAddDecimalMark, Maybe [CommoditySymbol]
displayOrder :: Maybe [CommoditySymbol]
displayOrder :: AmountDisplayOpts -> Maybe [CommoditySymbol]
displayOrder}
  a :: Amount
a@Amount{astyle :: Amount -> AmountStyle
astyle=AmountStyle
style} =
    WideBuilder -> WideBuilder
color forall a b. (a -> b) -> a -> b
$ case AmountStyle -> Side
ascommodityside AmountStyle
style of
      Side
L -> forall {a}. Monoid a => a -> a -> a
showC (CommoditySymbol -> WideBuilder
wbFromText CommoditySymbol
comm) WideBuilder
space forall a. Semigroup a => a -> a -> a
<> WideBuilder
quantity' forall a. Semigroup a => a -> a -> a
<> WideBuilder
price
      Side
R -> WideBuilder
quantity' forall a. Semigroup a => a -> a -> a
<> forall {a}. Monoid a => a -> a -> a
showC WideBuilder
space (CommoditySymbol -> WideBuilder
wbFromText CommoditySymbol
comm) forall a. Semigroup a => a -> a -> a
<> WideBuilder
price
  where
    color :: WideBuilder -> WideBuilder
color = if Bool
displayColour Bool -> Bool -> Bool
&& Amount -> Bool
isNegativeAmount Amount
a then ColorIntensity -> Color -> WideBuilder -> WideBuilder
colorB ColorIntensity
Dull Color
Red else forall a. a -> a
id
    quantity :: WideBuilder
quantity = Bool -> Amount -> WideBuilder
showAmountQuantity Bool
displayAddDecimalMark forall a b. (a -> b) -> a -> b
$
      if Bool
displayThousandsSep then Amount
a else Amount
a{astyle :: AmountStyle
astyle=(Amount -> AmountStyle
astyle Amount
a){asdigitgroups :: Maybe DigitGroupStyle
asdigitgroups=forall a. Maybe a
Nothing}}
    (WideBuilder
quantity', CommoditySymbol
comm)
      | Amount -> Bool
amountLooksZero Amount
a Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
displayZeroCommodity = (Builder -> Int -> WideBuilder
WideBuilder (Char -> Builder
TB.singleton Char
'0') Int
1, CommoditySymbol
"")
      | Bool
otherwise = (WideBuilder
quantity, CommoditySymbol -> CommoditySymbol
quoteCommoditySymbolIfNeeded forall a b. (a -> b) -> a -> b
$ Amount -> CommoditySymbol
acommodity Amount
a)
    space :: WideBuilder
space = if Bool -> Bool
not (CommoditySymbol -> Bool
T.null CommoditySymbol
comm) Bool -> Bool -> Bool
&& AmountStyle -> Bool
ascommodityspaced AmountStyle
style then Builder -> Int -> WideBuilder
WideBuilder (Char -> Builder
TB.singleton Char
' ') Int
1 else forall a. Monoid a => a
mempty
    -- concatenate these texts,
    -- or return the empty text if there's a commodity display order. XXX why ?
    showC :: a -> a -> a
showC a
l a
r = if forall a. Maybe a -> Bool
isJust Maybe [CommoditySymbol]
displayOrder then forall a. Monoid a => a
mempty else a
l forall a. Semigroup a => a -> a -> a
<> a
r
    price :: WideBuilder
price = if Bool
displayPrice then Amount -> WideBuilder
showAmountPrice Amount
a else forall a. Monoid a => a
mempty

-- | Colour version. For a negative amount, adds ANSI codes to change the colour,
-- currently to hard-coded red.
--
-- > cshowAmount = wbUnpack . showAmountB def{displayColour=True}
cshowAmount :: Amount -> String
cshowAmount :: Amount -> [Char]
cshowAmount = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> Amount -> WideBuilder
showAmountB forall a. Default a => a
def{displayColour :: Bool
displayColour=Bool
True}

-- | Get the string representation of an amount, without any \@ price.
--
-- > showAmountWithoutPrice = wbUnpack . showAmountB noPrice
showAmountWithoutPrice :: Amount -> String
showAmountWithoutPrice :: Amount -> [Char]
showAmountWithoutPrice = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> Amount -> WideBuilder
showAmountB AmountDisplayOpts
noPrice

-- | Like showAmount, but show a zero amount's commodity if it has one.
--
-- > showAmountWithZeroCommodity = wbUnpack . showAmountB noColour{displayZeryCommodity=True}
showAmountWithZeroCommodity :: Amount -> String
showAmountWithZeroCommodity :: Amount -> [Char]
showAmountWithZeroCommodity = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> Amount -> WideBuilder
showAmountB AmountDisplayOpts
noColour{displayZeroCommodity :: Bool
displayZeroCommodity=Bool
True}

-- | Get a string representation of an amount for debugging,
-- appropriate to the current debug level. 9 shows maximum detail.
showAmountDebug :: Amount -> String
showAmountDebug :: Amount -> [Char]
showAmountDebug Amount{acommodity :: Amount -> CommoditySymbol
acommodity=CommoditySymbol
"AUTO"} = [Char]
"(missing)"
showAmountDebug Amount{Maybe AmountPrice
Quantity
CommoditySymbol
AmountStyle
aprice :: Maybe AmountPrice
astyle :: AmountStyle
aquantity :: Quantity
acommodity :: CommoditySymbol
astyle :: Amount -> AmountStyle
aprice :: Amount -> Maybe AmountPrice
acommodity :: Amount -> CommoditySymbol
aquantity :: Amount -> Quantity
..} =
      [Char]
"Amount {acommodity=" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> [Char]
show CommoditySymbol
acommodity forall a. [a] -> [a] -> [a]
++ [Char]
", aquantity=" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> [Char]
show Quantity
aquantity
   forall a. [a] -> [a] -> [a]
++ [Char]
", aprice=" forall a. [a] -> [a] -> [a]
++ Maybe AmountPrice -> [Char]
showAmountPriceDebug Maybe AmountPrice
aprice forall a. [a] -> [a] -> [a]
++ [Char]
", astyle=" forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> [Char]
show AmountStyle
astyle forall a. [a] -> [a] -> [a]
++ [Char]
"}"

-- | Get a Text Builder for the string representation of the number part of of an amount,
-- using the display settings from its commodity. Also returns the width of the number.
-- With a true first argument, if there are no decimal digits but there are digit group separators,
-- it shows the amount with a trailing decimal mark to help disambiguate it for parsing.
showAmountQuantity :: Bool -> Amount -> WideBuilder
showAmountQuantity :: Bool -> Amount -> WideBuilder
showAmountQuantity Bool
disambiguate amt :: Amount
amt@Amount{astyle :: Amount -> AmountStyle
astyle=AmountStyle{asdecimalmark :: AmountStyle -> Maybe Char
asdecimalmark=Maybe Char
mdec, asdigitgroups :: AmountStyle -> Maybe DigitGroupStyle
asdigitgroups=Maybe DigitGroupStyle
mgrps}} =
    WideBuilder
signB forall a. Semigroup a => a -> a -> a
<> WideBuilder
intB forall a. Semigroup a => a -> a -> a
<> WideBuilder
fracB
  where
    Decimal Word8
decplaces Integer
mantissa = Amount -> Quantity
amountRoundedQuantity Amount
amt
    numtxt :: CommoditySymbol
numtxt = [Char] -> CommoditySymbol
T.pack forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Show a => a -> [Char]
show forall a b. (a -> b) -> a -> b
$ forall a. Num a => a -> a
abs Integer
mantissa
    numlen :: Int
numlen = CommoditySymbol -> Int
T.length CommoditySymbol
numtxt
    intLen :: Int
intLen = forall a. Ord a => a -> a -> a
max Int
1 forall a b. (a -> b) -> a -> b
$ Int
numlen forall a. Num a => a -> a -> a
- forall a b. (Integral a, Num b) => a -> b
fromIntegral Word8
decplaces
    dec :: Char
dec = forall a. a -> Maybe a -> a
fromMaybe Char
'.' Maybe Char
mdec
    numtxtwithzero :: CommoditySymbol
numtxtwithzero = Int -> CommoditySymbol -> CommoditySymbol
T.replicate (forall a b. (Integral a, Num b) => a -> b
fromIntegral Word8
decplaces forall a. Num a => a -> a -> a
+ Int
1 forall a. Num a => a -> a -> a
- Int
numlen) CommoditySymbol
"0" forall a. Semigroup a => a -> a -> a
<> CommoditySymbol
numtxt
    (CommoditySymbol
intPart, CommoditySymbol
fracPart) = Int -> CommoditySymbol -> (CommoditySymbol, CommoditySymbol)
T.splitAt Int
intLen CommoditySymbol
numtxtwithzero
    intB :: WideBuilder
intB = Maybe DigitGroupStyle -> Int -> CommoditySymbol -> WideBuilder
applyDigitGroupStyle Maybe DigitGroupStyle
mgrps Int
intLen forall a b. (a -> b) -> a -> b
$ if Word8
decplaces forall a. Eq a => a -> a -> Bool
== Word8
0 then CommoditySymbol
numtxt else CommoditySymbol
intPart
    signB :: WideBuilder
signB = if Integer
mantissa forall a. Ord a => a -> a -> Bool
< Integer
0 then Builder -> Int -> WideBuilder
WideBuilder (Char -> Builder
TB.singleton Char
'-') Int
1 else forall a. Monoid a => a
mempty
    fracB :: WideBuilder
fracB = if Word8
decplaces forall a. Ord a => a -> a -> Bool
> Word8
0 Bool -> Bool -> Bool
|| (Bool
isshowingdigitgroupseparator Bool -> Bool -> Bool
&& Bool
disambiguate)
      then Builder -> Int -> WideBuilder
WideBuilder (Char -> Builder
TB.singleton Char
dec forall a. Semigroup a => a -> a -> a
<> CommoditySymbol -> Builder
TB.fromText CommoditySymbol
fracPart) (Int
1 forall a. Num a => a -> a -> a
+ forall a b. (Integral a, Num b) => a -> b
fromIntegral Word8
decplaces)
      else forall a. Monoid a => a
mempty
      where
        isshowingdigitgroupseparator :: Bool
isshowingdigitgroupseparator = case Maybe DigitGroupStyle
mgrps of
          Just (DigitGroups Char
_ (Word8
rightmostgrplen:[Word8]
_)) -> Int
intLen forall a. Ord a => a -> a -> Bool
> forall a b. (Integral a, Num b) => a -> b
fromIntegral Word8
rightmostgrplen
          Maybe DigitGroupStyle
_ -> Bool
False

-- | Given an integer as text, and its length, apply the given DigitGroupStyle,
-- inserting digit group separators between digit groups where appropriate.
-- Returns a Text builder and the number of digit group separators used.
applyDigitGroupStyle :: Maybe DigitGroupStyle -> Int -> T.Text -> WideBuilder
applyDigitGroupStyle :: Maybe DigitGroupStyle -> Int -> CommoditySymbol -> WideBuilder
applyDigitGroupStyle Maybe DigitGroupStyle
Nothing                       Int
l CommoditySymbol
s = Builder -> Int -> WideBuilder
WideBuilder (CommoditySymbol -> Builder
TB.fromText CommoditySymbol
s) Int
l
applyDigitGroupStyle (Just (DigitGroups Char
_ []))     Int
l CommoditySymbol
s = Builder -> Int -> WideBuilder
WideBuilder (CommoditySymbol -> Builder
TB.fromText CommoditySymbol
s) Int
l
applyDigitGroupStyle (Just (DigitGroups Char
c (Word8
g0:[Word8]
gs0))) Int
l0 CommoditySymbol
s0 = forall {a}.
Integral a =>
NonEmpty a -> Integer -> CommoditySymbol -> WideBuilder
addseps (Word8
g0forall a. a -> [a] -> NonEmpty a
:|[Word8]
gs0) (forall a. Integral a => a -> Integer
toInteger Int
l0) CommoditySymbol
s0
  where
    addseps :: NonEmpty a -> Integer -> CommoditySymbol -> WideBuilder
addseps (a
g1:|[a]
gs1) Integer
l1 CommoditySymbol
s1
        | Integer
l2 forall a. Ord a => a -> a -> Bool
> Integer
0    = NonEmpty a -> Integer -> CommoditySymbol -> WideBuilder
addseps NonEmpty a
gs2 Integer
l2 CommoditySymbol
rest forall a. Semigroup a => a -> a -> a
<> Builder -> Int -> WideBuilder
WideBuilder (Char -> Builder
TB.singleton Char
c forall a. Semigroup a => a -> a -> a
<> CommoditySymbol -> Builder
TB.fromText CommoditySymbol
part) (forall a b. (Integral a, Num b) => a -> b
fromIntegral a
g1 forall a. Num a => a -> a -> a
+ Int
1)
        | Bool
otherwise = Builder -> Int -> WideBuilder
WideBuilder (CommoditySymbol -> Builder
TB.fromText CommoditySymbol
s1) (forall a. Num a => Integer -> a
fromInteger Integer
l1)
      where
        (CommoditySymbol
rest, CommoditySymbol
part) = Int -> CommoditySymbol -> (CommoditySymbol, CommoditySymbol)
T.splitAt (forall a. Num a => Integer -> a
fromInteger Integer
l2) CommoditySymbol
s1
        gs2 :: NonEmpty a
gs2 = forall a. a -> Maybe a -> a
fromMaybe (a
g1forall a. a -> [a] -> NonEmpty a
:|[]) forall a b. (a -> b) -> a -> b
$ forall a. [a] -> Maybe (NonEmpty a)
nonEmpty [a]
gs1
        l2 :: Integer
l2 = Integer
l1 forall a. Num a => a -> a -> a
- forall a. Integral a => a -> Integer
toInteger a
g1

-------------------------------------------------------------------------------
-- MixedAmount

instance Semigroup MixedAmount where
  <> :: MixedAmount -> MixedAmount -> MixedAmount
(<>) = MixedAmount -> MixedAmount -> MixedAmount
maPlus
  sconcat :: NonEmpty MixedAmount -> MixedAmount
sconcat = forall (t :: * -> *). Foldable t => t MixedAmount -> MixedAmount
maSum
  stimes :: forall b. Integral b => b -> MixedAmount -> MixedAmount
stimes b
n = Quantity -> MixedAmount -> MixedAmount
multiplyMixedAmount (forall a b. (Integral a, Num b) => a -> b
fromIntegral b
n)

instance Monoid MixedAmount where
  mempty :: MixedAmount
mempty = MixedAmount
nullmixedamt
  mconcat :: [MixedAmount] -> MixedAmount
mconcat = forall (t :: * -> *). Foldable t => t MixedAmount -> MixedAmount
maSum

instance Num MixedAmount where
    fromInteger :: Integer -> MixedAmount
fromInteger = Amount -> MixedAmount
mixedAmount forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Num a => Integer -> a
fromInteger
    negate :: MixedAmount -> MixedAmount
negate = MixedAmount -> MixedAmount
maNegate
    + :: MixedAmount -> MixedAmount -> MixedAmount
(+)    = MixedAmount -> MixedAmount -> MixedAmount
maPlus
    * :: MixedAmount -> MixedAmount -> MixedAmount
(*)    = forall a. HasCallStack => [Char] -> a
error [Char]
"error, mixed amounts do not support multiplication" -- PARTIAL:
    abs :: MixedAmount -> MixedAmount
abs    = forall a. HasCallStack => [Char] -> a
error [Char]
"error, mixed amounts do not support abs"
    signum :: MixedAmount -> MixedAmount
signum = forall a. HasCallStack => [Char] -> a
error [Char]
"error, mixed amounts do not support signum"

-- | Calculate the key used to store an Amount within a MixedAmount.
amountKey :: Amount -> MixedAmountKey
amountKey :: Amount -> MixedAmountKey
amountKey amt :: Amount
amt@Amount{acommodity :: Amount -> CommoditySymbol
acommodity=CommoditySymbol
c} = case Amount -> Maybe AmountPrice
aprice Amount
amt of
    Maybe AmountPrice
Nothing             -> CommoditySymbol -> MixedAmountKey
MixedAmountKeyNoPrice    CommoditySymbol
c
    Just (TotalPrice Amount
p) -> CommoditySymbol -> CommoditySymbol -> MixedAmountKey
MixedAmountKeyTotalPrice CommoditySymbol
c (Amount -> CommoditySymbol
acommodity Amount
p)
    Just (UnitPrice  Amount
p) -> CommoditySymbol -> CommoditySymbol -> Quantity -> MixedAmountKey
MixedAmountKeyUnitPrice  CommoditySymbol
c (Amount -> CommoditySymbol
acommodity Amount
p) (Amount -> Quantity
aquantity Amount
p)

-- | The empty mixed amount.
nullmixedamt :: MixedAmount
nullmixedamt :: MixedAmount
nullmixedamt = Map MixedAmountKey Amount -> MixedAmount
Mixed forall a. Monoid a => a
mempty

-- | A special mixed amount used as a marker, meaning
-- "no explicit amount provided here, infer it when needed".
missingmixedamt :: MixedAmount
missingmixedamt :: MixedAmount
missingmixedamt = Amount -> MixedAmount
mixedAmount Amount
missingamt

-- | Does this MixedAmount include the "missing amount" marker ?
-- Note: currently does not test for equality with missingmixedamt,
-- instead it looks for missingamt among the Amounts.
-- missingamt should always be alone, but detect it even if not.
isMissingMixedAmount :: MixedAmount -> Bool
isMissingMixedAmount :: MixedAmount -> Bool
isMissingMixedAmount (Mixed Map MixedAmountKey Amount
ma) = Amount -> MixedAmountKey
amountKey Amount
missingamt forall k a. Ord k => k -> Map k a -> Bool
`M.member` Map MixedAmountKey Amount
ma

-- | Convert amounts in various commodities into a mixed amount.
mixed :: Foldable t => t Amount -> MixedAmount
mixed :: forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed = forall (t :: * -> *).
Foldable t =>
MixedAmount -> t Amount -> MixedAmount
maAddAmounts MixedAmount
nullmixedamt

-- | Create a MixedAmount from a single Amount.
mixedAmount :: Amount -> MixedAmount
mixedAmount :: Amount -> MixedAmount
mixedAmount Amount
a = Map MixedAmountKey Amount -> MixedAmount
Mixed forall a b. (a -> b) -> a -> b
$ forall k a. k -> a -> Map k a
M.singleton (Amount -> MixedAmountKey
amountKey Amount
a) Amount
a

-- | Add an Amount to a MixedAmount, normalising the result.
-- Amounts with different costs are kept separate.
maAddAmount :: MixedAmount -> Amount -> MixedAmount
maAddAmount :: MixedAmount -> Amount -> MixedAmount
maAddAmount (Mixed Map MixedAmountKey Amount
ma) Amount
a = Map MixedAmountKey Amount -> MixedAmount
Mixed forall a b. (a -> b) -> a -> b
$ forall k a. Ord k => (a -> a -> a) -> k -> a -> Map k a -> Map k a
M.insertWith Amount -> Amount -> Amount
sumSimilarAmountsUsingFirstPrice (Amount -> MixedAmountKey
amountKey Amount
a) Amount
a Map MixedAmountKey Amount
ma

-- | Add a collection of Amounts to a MixedAmount, normalising the result.
-- Amounts with different costs are kept separate.
maAddAmounts :: Foldable t => MixedAmount -> t Amount -> MixedAmount
maAddAmounts :: forall (t :: * -> *).
Foldable t =>
MixedAmount -> t Amount -> MixedAmount
maAddAmounts = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' MixedAmount -> Amount -> MixedAmount
maAddAmount

-- | Negate mixed amount's quantities (and total prices, if any).
maNegate :: MixedAmount -> MixedAmount
maNegate :: MixedAmount -> MixedAmount
maNegate = (Quantity -> Quantity) -> MixedAmount -> MixedAmount
transformMixedAmount forall a. Num a => a -> a
negate

-- | Sum two MixedAmount, keeping the cost of the first if any.
-- Amounts with different costs are kept separate (since 2021).
maPlus :: MixedAmount -> MixedAmount -> MixedAmount
maPlus :: MixedAmount -> MixedAmount -> MixedAmount
maPlus (Mixed Map MixedAmountKey Amount
as) (Mixed Map MixedAmountKey Amount
bs) = Map MixedAmountKey Amount -> MixedAmount
Mixed forall a b. (a -> b) -> a -> b
$ forall k a. Ord k => (a -> a -> a) -> Map k a -> Map k a -> Map k a
M.unionWith Amount -> Amount -> Amount
sumSimilarAmountsUsingFirstPrice Map MixedAmountKey Amount
as Map MixedAmountKey Amount
bs

-- | Subtract a MixedAmount from another.
-- Amounts with different costs are kept separate.
maMinus :: MixedAmount -> MixedAmount -> MixedAmount
maMinus :: MixedAmount -> MixedAmount -> MixedAmount
maMinus MixedAmount
a = MixedAmount -> MixedAmount -> MixedAmount
maPlus MixedAmount
a forall b c a. (b -> c) -> (a -> b) -> a -> c
. MixedAmount -> MixedAmount
maNegate

-- | Sum a collection of MixedAmounts.
-- Amounts with different costs are kept separate.
maSum :: Foldable t => t MixedAmount -> MixedAmount
maSum :: forall (t :: * -> *). Foldable t => t MixedAmount -> MixedAmount
maSum = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' MixedAmount -> MixedAmount -> MixedAmount
maPlus MixedAmount
nullmixedamt

-- | Divide a mixed amount's quantities (and total prices, if any) by a constant.
divideMixedAmount :: Quantity -> MixedAmount -> MixedAmount
divideMixedAmount :: Quantity -> MixedAmount -> MixedAmount
divideMixedAmount Quantity
n = (Quantity -> Quantity) -> MixedAmount -> MixedAmount
transformMixedAmount (forall a. Fractional a => a -> a -> a
/Quantity
n)

-- | Multiply a mixed amount's quantities (and total prices, if any) by a constant.
multiplyMixedAmount :: Quantity -> MixedAmount -> MixedAmount
multiplyMixedAmount :: Quantity -> MixedAmount -> MixedAmount
multiplyMixedAmount Quantity
n = (Quantity -> Quantity) -> MixedAmount -> MixedAmount
transformMixedAmount (forall a. Num a => a -> a -> a
*Quantity
n)

-- | Apply a function to a mixed amount's quantities (and its total prices, if it has any).
transformMixedAmount :: (Quantity -> Quantity) -> MixedAmount -> MixedAmount
transformMixedAmount :: (Quantity -> Quantity) -> MixedAmount -> MixedAmount
transformMixedAmount Quantity -> Quantity
f = (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmountUnsafe ((Quantity -> Quantity) -> Amount -> Amount
transformAmount Quantity -> Quantity
f)

-- | Calculate the average of some mixed amounts.
averageMixedAmounts :: [MixedAmount] -> MixedAmount
averageMixedAmounts :: [MixedAmount] -> MixedAmount
averageMixedAmounts [MixedAmount]
as = forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall (t :: * -> *) a. Foldable t => t a -> Int
length [MixedAmount]
as) Quantity -> MixedAmount -> MixedAmount
`divideMixedAmount` forall (t :: * -> *). Foldable t => t MixedAmount -> MixedAmount
maSum [MixedAmount]
as

-- | Is this mixed amount negative, if we can tell that unambiguously?
-- Ie when normalised, are all individual commodity amounts negative ?
isNegativeMixedAmount :: MixedAmount -> Maybe Bool
isNegativeMixedAmount :: MixedAmount -> Maybe Bool
isNegativeMixedAmount MixedAmount
m =
  case MixedAmount -> [Amount]
amounts forall a b. (a -> b) -> a -> b
$ MixedAmount -> MixedAmount
mixedAmountStripPrices MixedAmount
m of
    []  -> forall a. a -> Maybe a
Just Bool
False
    [Amount
a] -> forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount -> Bool
isNegativeAmount Amount
a
    [Amount]
as | forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Amount -> Bool
isNegativeAmount [Amount]
as -> forall a. a -> Maybe a
Just Bool
True
    [Amount]
as | Bool -> Bool
not (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any Amount -> Bool
isNegativeAmount [Amount]
as) -> forall a. a -> Maybe a
Just Bool
False
    [Amount]
_ -> forall a. Maybe a
Nothing  -- multiple amounts with different signs

-- | Does this mixed amount appear to be zero when rendered with its display precision?
-- See amountLooksZero.
mixedAmountLooksZero :: MixedAmount -> Bool
mixedAmountLooksZero :: MixedAmount -> Bool
mixedAmountLooksZero (Mixed Map MixedAmountKey Amount
ma) = forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Amount -> Bool
amountLooksZero Map MixedAmountKey Amount
ma

-- | Is this mixed amount exactly zero, ignoring its display precision?
-- See amountIsZero.
mixedAmountIsZero :: MixedAmount -> Bool
mixedAmountIsZero :: MixedAmount -> Bool
mixedAmountIsZero (Mixed Map MixedAmountKey Amount
ma) = forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Amount -> Bool
amountIsZero Map MixedAmountKey Amount
ma

-- | Is this mixed amount exactly zero, ignoring its display precision?
--
-- A convenient alias for mixedAmountIsZero.
maIsZero :: MixedAmount -> Bool
maIsZero :: MixedAmount -> Bool
maIsZero = MixedAmount -> Bool
mixedAmountIsZero

-- | Is this mixed amount non-zero, ignoring its display precision?
--
-- A convenient alias for not . mixedAmountIsZero.
maIsNonZero :: MixedAmount -> Bool
maIsNonZero :: MixedAmount -> Bool
maIsNonZero = Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. MixedAmount -> Bool
mixedAmountIsZero

-- | Get a mixed amount's component amounts, with some cleanups.
-- The following descriptions are old and possibly wrong:
--
-- * amounts in the same commodity are combined unless they have different prices or total prices
--
-- * multiple zero amounts, all with the same non-null commodity, are replaced by just the last of them, preserving the commodity and amount style (all but the last zero amount are discarded)
--
-- * multiple zero amounts with multiple commodities, or no commodities, are replaced by one commodity-less zero amount
--
-- * an empty amount list is replaced by one commodity-less zero amount
--
-- * the special "missing" mixed amount remains unchanged
--
amounts :: MixedAmount -> [Amount]
amounts :: MixedAmount -> [Amount]
amounts (Mixed Map MixedAmountKey Amount
ma)
  | MixedAmount -> Bool
isMissingMixedAmount (Map MixedAmountKey Amount -> MixedAmount
Mixed Map MixedAmountKey Amount
ma) = [Amount
missingamt]
  | forall k a. Map k a -> Bool
M.null Map MixedAmountKey Amount
nonzeros                 = [Amount
newzero]
  | Bool
otherwise                       = forall (t :: * -> *) a. Foldable t => t a -> [a]
toList Map MixedAmountKey Amount
nonzeros
  where
    newzero :: Amount
newzero = forall a. a -> Maybe a -> a
fromMaybe Amount
nullamt forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
find (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. CommoditySymbol -> Bool
T.null forall b c a. (b -> c) -> (a -> b) -> a -> c
. Amount -> CommoditySymbol
acommodity) Map MixedAmountKey Amount
zeros
    (Map MixedAmountKey Amount
zeros, Map MixedAmountKey Amount
nonzeros) = forall a k. (a -> Bool) -> Map k a -> (Map k a, Map k a)
M.partition Amount -> Bool
amountIsZero Map MixedAmountKey Amount
ma

-- | Get a mixed amount's component amounts, with some cleanups.
-- This is a new version of @amounts@, with updated descriptions
-- and optimised for @print@ to show commodityful zeros.
--
-- * If it contains the "missing amount" marker, only that is returned
--   (discarding any additional amounts).
--
-- * Or if it contains any non-zero amounts, only those are returned
--   (discarding any zeroes).
--
-- * Or if it contains any zero amounts (possibly more than one,
--   possibly in different commodities), all of those are returned.
--
-- * Otherwise the null amount is returned.
--
amountsPreservingZeros :: MixedAmount -> [Amount]
amountsPreservingZeros :: MixedAmount -> [Amount]
amountsPreservingZeros (Mixed Map MixedAmountKey Amount
ma)
  | MixedAmount -> Bool
isMissingMixedAmount (Map MixedAmountKey Amount -> MixedAmount
Mixed Map MixedAmountKey Amount
ma) = [Amount
missingamt]
  | Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ forall k a. Map k a -> Bool
M.null Map MixedAmountKey Amount
nonzeros           = forall (t :: * -> *) a. Foldable t => t a -> [a]
toList Map MixedAmountKey Amount
nonzeros
  | Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ forall k a. Map k a -> Bool
M.null Map MixedAmountKey Amount
zeros              = forall (t :: * -> *) a. Foldable t => t a -> [a]
toList Map MixedAmountKey Amount
zeros
  | Bool
otherwise                       = [Amount
nullamt]
  where
    (Map MixedAmountKey Amount
zeros, Map MixedAmountKey Amount
nonzeros) = forall a k. (a -> Bool) -> Map k a -> (Map k a, Map k a)
M.partition Amount -> Bool
amountIsZero Map MixedAmountKey Amount
ma

-- | Get a mixed amount's component amounts without normalising zero and missing
-- amounts. This is used for JSON serialisation, so the order is important. In
-- particular, we want the Amounts given in the order of the MixedAmountKeys,
-- i.e. lexicographically first by commodity, then by price commodity, then by
-- unit price from most negative to most positive.
amountsRaw :: MixedAmount -> [Amount]
amountsRaw :: MixedAmount -> [Amount]
amountsRaw (Mixed Map MixedAmountKey Amount
ma) = forall (t :: * -> *) a. Foldable t => t a -> [a]
toList Map MixedAmountKey Amount
ma

-- | Get this mixed amount's commodities as a set.
-- Returns an empty set if there are no amounts.
maCommodities :: MixedAmount -> S.Set CommoditySymbol
maCommodities :: MixedAmount -> Set CommoditySymbol
maCommodities = forall a. Ord a => [a] -> Set a
S.fromList forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Amount -> CommoditySymbol
acommodity forall b c a. (b -> c) -> (a -> b) -> a -> c
. MixedAmount -> [Amount]
amounts'
  where amounts' :: MixedAmount -> [Amount]
amounts' ma :: MixedAmount
ma@(Mixed Map MixedAmountKey Amount
m) = if forall k a. Map k a -> Bool
M.null Map MixedAmountKey Amount
m then [] else MixedAmount -> [Amount]
amounts MixedAmount
ma

-- | Unify a MixedAmount to a single commodity value if possible.
-- This consolidates amounts of the same commodity and discards zero
-- amounts; but this one insists on simplifying to a single commodity,
-- and will return Nothing if this is not possible.
unifyMixedAmount :: MixedAmount -> Maybe Amount
unifyMixedAmount :: MixedAmount -> Maybe Amount
unifyMixedAmount = forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM Amount -> Amount -> Maybe Amount
combine Amount
0 forall b c a. (b -> c) -> (a -> b) -> a -> c
. MixedAmount -> [Amount]
amounts
  where
    combine :: Amount -> Amount -> Maybe Amount
combine Amount
amt Amount
result
      | Amount -> Bool
amountIsZero Amount
amt                    = forall a. a -> Maybe a
Just Amount
result
      | Amount -> Bool
amountIsZero Amount
result                 = forall a. a -> Maybe a
Just Amount
amt
      | Amount -> CommoditySymbol
acommodity Amount
amt forall a. Eq a => a -> a -> Bool
== Amount -> CommoditySymbol
acommodity Amount
result = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount
amt forall a. Num a => a -> a -> a
+ Amount
result
      | Bool
otherwise                           = forall a. Maybe a
Nothing

-- | Sum same-commodity amounts in a lossy way, applying the first
-- price to the result and discarding any other prices. Only used as a
-- rendering helper.
sumSimilarAmountsUsingFirstPrice :: Amount -> Amount -> Amount
sumSimilarAmountsUsingFirstPrice :: Amount -> Amount -> Amount
sumSimilarAmountsUsingFirstPrice Amount
a Amount
b = (Amount
a forall a. Num a => a -> a -> a
+ Amount
b){aprice :: Maybe AmountPrice
aprice=Maybe AmountPrice
p}
  where
    p :: Maybe AmountPrice
p = case (Amount -> Maybe AmountPrice
aprice Amount
a, Amount -> Maybe AmountPrice
aprice Amount
b) of
        (Just (TotalPrice Amount
ap), Just (TotalPrice Amount
bp))
          -> forall a. a -> Maybe a
Just forall b c a. (b -> c) -> (a -> b) -> a -> c
. Amount -> AmountPrice
TotalPrice forall a b. (a -> b) -> a -> b
$ Amount
ap{aquantity :: Quantity
aquantity = Amount -> Quantity
aquantity Amount
ap forall a. Num a => a -> a -> a
+ Amount -> Quantity
aquantity Amount
bp }
        (Maybe AmountPrice, Maybe AmountPrice)
_ -> Amount -> Maybe AmountPrice
aprice Amount
a

-- -- | Sum same-commodity amounts. If there were different prices, set
-- -- the price to a special marker indicating "various". Only used as a
-- -- rendering helper.
-- sumSimilarAmountsNotingPriceDifference :: [Amount] -> Amount
-- sumSimilarAmountsNotingPriceDifference [] = nullamt
-- sumSimilarAmountsNotingPriceDifference as = undefined

-- | Filter a mixed amount's component amounts by a predicate.
filterMixedAmount :: (Amount -> Bool) -> MixedAmount -> MixedAmount
filterMixedAmount :: (Amount -> Bool) -> MixedAmount -> MixedAmount
filterMixedAmount Amount -> Bool
p (Mixed Map MixedAmountKey Amount
ma) = Map MixedAmountKey Amount -> MixedAmount
Mixed forall a b. (a -> b) -> a -> b
$ forall a k. (a -> Bool) -> Map k a -> Map k a
M.filter Amount -> Bool
p Map MixedAmountKey Amount
ma

-- | Return an unnormalised MixedAmount containing exactly one Amount
-- with the specified commodity and the quantity of that commodity
-- found in the original. NB if Amount's quantity is zero it will be
-- discarded next time the MixedAmount gets normalised.
filterMixedAmountByCommodity :: CommoditySymbol -> MixedAmount -> MixedAmount
filterMixedAmountByCommodity :: CommoditySymbol -> MixedAmount -> MixedAmount
filterMixedAmountByCommodity CommoditySymbol
c (Mixed Map MixedAmountKey Amount
ma)
  | forall k a. Map k a -> Bool
M.null Map MixedAmountKey Amount
ma' = Amount -> MixedAmount
mixedAmount Amount
nullamt{acommodity :: CommoditySymbol
acommodity=CommoditySymbol
c}
  | Bool
otherwise  = Map MixedAmountKey Amount -> MixedAmount
Mixed Map MixedAmountKey Amount
ma'
  where ma' :: Map MixedAmountKey Amount
ma' = forall a k. (a -> Bool) -> Map k a -> Map k a
M.filter ((CommoditySymbol
cforall a. Eq a => a -> a -> Bool
==) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Amount -> CommoditySymbol
acommodity) Map MixedAmountKey Amount
ma

-- | Apply a transform to a mixed amount's component 'Amount's.
mapMixedAmount :: (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmount :: (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmount Amount -> Amount
f (Mixed Map MixedAmountKey Amount
ma) = forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map Amount -> Amount
f forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => t a -> [a]
toList Map MixedAmountKey Amount
ma

-- | Apply a transform to a mixed amount's component 'Amount's, which does not
-- affect the key of the amount (i.e. doesn't change the commodity, price
-- commodity, or unit price amount). This condition is not checked.
mapMixedAmountUnsafe :: (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmountUnsafe :: (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmountUnsafe Amount -> Amount
f (Mixed Map MixedAmountKey Amount
ma) = Map MixedAmountKey Amount -> MixedAmount
Mixed forall a b. (a -> b) -> a -> b
$ forall a b k. (a -> b) -> Map k a -> Map k b
M.map Amount -> Amount
f Map MixedAmountKey Amount
ma  -- Use M.map instead of fmap to maintain strictness

-- | Convert all component amounts to cost/selling price where
-- possible (see amountCost).
mixedAmountCost :: MixedAmount -> MixedAmount
mixedAmountCost :: MixedAmount -> MixedAmount
mixedAmountCost (Mixed Map MixedAmountKey Amount
ma) =
    forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (\MixedAmount
m Amount
a -> MixedAmount -> Amount -> MixedAmount
maAddAmount MixedAmount
m (Amount -> Amount
amountCost Amount
a)) (Map MixedAmountKey Amount -> MixedAmount
Mixed Map MixedAmountKey Amount
noPrices) Map MixedAmountKey Amount
withPrices
  where (Map MixedAmountKey Amount
noPrices, Map MixedAmountKey Amount
withPrices) = forall a k. (a -> Bool) -> Map k a -> (Map k a, Map k a)
M.partition (forall a. Maybe a -> Bool
isNothing forall b c a. (b -> c) -> (a -> b) -> a -> c
. Amount -> Maybe AmountPrice
aprice) Map MixedAmountKey Amount
ma

-- -- | MixedAmount derived Eq instance in Types.hs doesn't know that we
-- -- want $0 = EUR0 = 0. Yet we don't want to drag all this code over there.
-- -- For now, use this when cross-commodity zero equality is important.
-- mixedAmountEquals :: MixedAmount -> MixedAmount -> Bool
-- mixedAmountEquals a b = amounts a' == amounts b' || (mixedAmountLooksZero a' && mixedAmountLooksZero b')
--     where a' = mixedAmountStripPrices a
--           b' = mixedAmountStripPrices b

-- Mixed amount styles

-- v1
{-# DEPRECATED canonicaliseMixedAmount "please use mixedAmountSetStyle False (or styleAmounts) instead" #-}
canonicaliseMixedAmount :: M.Map CommoditySymbol AmountStyle -> MixedAmount -> MixedAmount
canonicaliseMixedAmount :: Map CommoditySymbol AmountStyle -> MixedAmount -> MixedAmount
canonicaliseMixedAmount = forall a. HasAmounts a => Map CommoditySymbol AmountStyle -> a -> a
styleAmounts

-- v2
{-# DEPRECATED styleMixedAmount "please use styleAmounts instead" #-}
-- | Given a map of standard commodity display styles, find and apply
-- the appropriate style to each individual amount.
styleMixedAmount :: M.Map CommoditySymbol AmountStyle -> MixedAmount -> MixedAmount
styleMixedAmount :: Map CommoditySymbol AmountStyle -> MixedAmount -> MixedAmount
styleMixedAmount = forall a. HasAmounts a => Map CommoditySymbol AmountStyle -> a -> a
styleAmounts

-- v3
{-# DEPRECATED mixedAmountSetStyles "please use styleAmounts instead" #-}
mixedAmountSetStyles :: M.Map CommoditySymbol AmountStyle -> MixedAmount -> MixedAmount
mixedAmountSetStyles :: Map CommoditySymbol AmountStyle -> MixedAmount -> MixedAmount
mixedAmountSetStyles = forall a. HasAmounts a => Map CommoditySymbol AmountStyle -> a -> a
styleAmounts

-- v4
instance HasAmounts MixedAmount where
  styleAmounts :: Map CommoditySymbol AmountStyle -> MixedAmount -> MixedAmount
styleAmounts Map CommoditySymbol AmountStyle
styles = (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmountUnsafe (forall a. HasAmounts a => Map CommoditySymbol AmountStyle -> a -> a
styleAmounts Map CommoditySymbol AmountStyle
styles)

instance HasAmounts Account where
  styleAmounts :: Map CommoditySymbol AmountStyle -> Account -> Account
styleAmounts Map CommoditySymbol AmountStyle
styles acct :: Account
acct@Account{MixedAmount
aebalance :: Account -> MixedAmount
aebalance :: MixedAmount
aebalance,MixedAmount
aibalance :: Account -> MixedAmount
aibalance :: MixedAmount
aibalance} =
    Account
acct{aebalance :: MixedAmount
aebalance=forall a. HasAmounts a => Map CommoditySymbol AmountStyle -> a -> a
styleAmounts Map CommoditySymbol AmountStyle
styles MixedAmount
aebalance, aibalance :: MixedAmount
aibalance=forall a. HasAmounts a => Map CommoditySymbol AmountStyle -> a -> a
styleAmounts Map CommoditySymbol AmountStyle
styles MixedAmount
aibalance}

-- | Reset each individual amount's display style to the default.
mixedAmountUnstyled :: MixedAmount -> MixedAmount
mixedAmountUnstyled :: MixedAmount -> MixedAmount
mixedAmountUnstyled = (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmountUnsafe Amount -> Amount
amountUnstyled

-- Mixed amount rendering

-- | Get the string representation of a mixed amount, after
-- normalising it to one amount per commodity. Assumes amounts have
-- no or similar prices, otherwise this can show misleading prices.
--
-- > showMixedAmount = wbUnpack . showMixedAmountB noColour
showMixedAmount :: MixedAmount -> String
showMixedAmount :: MixedAmount -> [Char]
showMixedAmount = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountB AmountDisplayOpts
noColour

-- | Get the one-line string representation of a mixed amount (also showing any costs).
--
-- > showMixedAmountOneLine = wbUnpack . showMixedAmountB oneLine
showMixedAmountOneLine :: MixedAmount -> String
showMixedAmountOneLine :: MixedAmount -> [Char]
showMixedAmountOneLine = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountB AmountDisplayOpts
oneLine{displayPrice :: Bool
displayPrice=Bool
True}

-- | Like showMixedAmount, but zero amounts are shown with their
-- commodity if they have one.
--
-- > showMixedAmountWithZeroCommodity = wbUnpack . showMixedAmountB noColour{displayZeroCommodity=True}
showMixedAmountWithZeroCommodity :: MixedAmount -> String
showMixedAmountWithZeroCommodity :: MixedAmount -> [Char]
showMixedAmountWithZeroCommodity = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountB AmountDisplayOpts
noColour{displayZeroCommodity :: Bool
displayZeroCommodity=Bool
True}

-- | Get the string representation of a mixed amount, without showing any transaction prices.
-- With a True argument, adds ANSI codes to show negative amounts in red.
--
-- > showMixedAmountWithoutPrice c = wbUnpack . showMixedAmountB noPrice{displayColour=c}
showMixedAmountWithoutPrice :: Bool -> MixedAmount -> String
showMixedAmountWithoutPrice :: Bool -> MixedAmount -> [Char]
showMixedAmountWithoutPrice Bool
c = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountB AmountDisplayOpts
noPrice{displayColour :: Bool
displayColour=Bool
c}

-- | Get the one-line string representation of a mixed amount, but without
-- any \@ prices.
-- With a True argument, adds ANSI codes to show negative amounts in red.
--
-- > showMixedAmountOneLineWithoutPrice c = wbUnpack . showMixedAmountB oneLine{displayColour=c}
showMixedAmountOneLineWithoutPrice :: Bool -> MixedAmount -> String
showMixedAmountOneLineWithoutPrice :: Bool -> MixedAmount -> [Char]
showMixedAmountOneLineWithoutPrice Bool
c = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountB AmountDisplayOpts
oneLine{displayColour :: Bool
displayColour=Bool
c}

-- | Like showMixedAmountOneLineWithoutPrice, but show at most the given width,
-- with an elision indicator if there are more.
-- With a True argument, adds ANSI codes to show negative amounts in red.
--
-- > showMixedAmountElided w c = wbUnpack . showMixedAmountB oneLine{displayColour=c, displayMaxWidth=Just w}
showMixedAmountElided :: Int -> Bool -> MixedAmount -> String
showMixedAmountElided :: Int -> Bool -> MixedAmount -> [Char]
showMixedAmountElided Int
w Bool
c = WideBuilder -> [Char]
wbUnpack forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountB AmountDisplayOpts
oneLine{displayColour :: Bool
displayColour=Bool
c, displayMaxWidth :: Maybe Int
displayMaxWidth=forall a. a -> Maybe a
Just Int
w}

-- | Get an unambiguous string representation of a mixed amount for debugging.
showMixedAmountDebug :: MixedAmount -> String
showMixedAmountDebug :: MixedAmount -> [Char]
showMixedAmountDebug MixedAmount
m | MixedAmount
m forall a. Eq a => a -> a -> Bool
== MixedAmount
missingmixedamt = [Char]
"(missing)"
                       | Bool
otherwise       = [Char]
"Mixed [" forall a. [a] -> [a] -> [a]
++ [Char]
as forall a. [a] -> [a] -> [a]
++ [Char]
"]"
    where as :: [Char]
as = forall a. [a] -> [[a]] -> [a]
intercalate [Char]
"\n       " forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map Amount -> [Char]
showAmountDebug forall a b. (a -> b) -> a -> b
$ MixedAmount -> [Amount]
amounts MixedAmount
m

-- | General function to generate a WideBuilder for a MixedAmount, according to the
-- supplied AmountDisplayOpts. This is the main function to use for showing
-- MixedAmounts, constructing a builder; it can then be converted to a Text with
-- wbToText, or to a String with wbUnpack.
--
-- If a maximum width is given then:
-- - If displayed on one line, it will display as many Amounts as can
--   fit in the given width, and further Amounts will be elided. There
--   will always be at least one amount displayed, even if this will
--   exceed the requested maximum width.
-- - If displayed on multiple lines, any Amounts longer than the
--   maximum width will be elided.
showMixedAmountB :: AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountB :: AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountB AmountDisplayOpts
opts MixedAmount
ma
    | AmountDisplayOpts -> Bool
displayOneLine AmountDisplayOpts
opts = AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountOneLineB AmountDisplayOpts
opts MixedAmount
ma
    | Bool
otherwise           = Builder -> Int -> WideBuilder
WideBuilder (WideBuilder -> Builder
wbBuilder forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Monoid a => [a] -> a
mconcat forall a b. (a -> b) -> a -> b
$ forall a. a -> [a] -> [a]
intersperse WideBuilder
sep [WideBuilder]
ls) Int
width
  where
    ls :: [WideBuilder]
ls = AmountDisplayOpts -> MixedAmount -> [WideBuilder]
showMixedAmountLinesB AmountDisplayOpts
opts MixedAmount
ma
    width :: Int
width = forall a. a -> [a] -> a
headDef Int
0 forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map WideBuilder -> Int
wbWidth [WideBuilder]
ls
    sep :: WideBuilder
sep = Builder -> Int -> WideBuilder
WideBuilder (Char -> Builder
TB.singleton Char
'\n') Int
0

-- | Helper for showMixedAmountB (and postingAsLines, ...) to show a list of Amounts on multiple lines.
-- This returns the list of WideBuilders: one for each Amount, and padded/elided to the appropriate width.
-- This does not honour displayOneLine; all amounts will be displayed as if displayOneLine were False.
showMixedAmountLinesB :: AmountDisplayOpts -> MixedAmount -> [WideBuilder]
showMixedAmountLinesB :: AmountDisplayOpts -> MixedAmount -> [WideBuilder]
showMixedAmountLinesB opts :: AmountDisplayOpts
opts@AmountDisplayOpts{displayMaxWidth :: AmountDisplayOpts -> Maybe Int
displayMaxWidth=Maybe Int
mmax,displayMinWidth :: AmountDisplayOpts -> Maybe Int
displayMinWidth=Maybe Int
mmin} MixedAmount
ma =
    forall a b. (a -> b) -> [a] -> [b]
map (AmountDisplay -> WideBuilder
adBuilder forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplay -> AmountDisplay
pad) [AmountDisplay]
elided
  where
    astrs :: [AmountDisplay]
astrs = Int -> (Amount -> WideBuilder) -> [Amount] -> [AmountDisplay]
amtDisplayList (WideBuilder -> Int
wbWidth WideBuilder
sep) (AmountDisplayOpts -> Amount -> WideBuilder
showAmountB AmountDisplayOpts
opts) forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> MixedAmount -> [Amount]
orderedAmounts AmountDisplayOpts
opts forall a b. (a -> b) -> a -> b
$
              if AmountDisplayOpts -> Bool
displayPrice AmountDisplayOpts
opts then MixedAmount
ma else MixedAmount -> MixedAmount
mixedAmountStripPrices MixedAmount
ma
    sep :: WideBuilder
sep   = Builder -> Int -> WideBuilder
WideBuilder (Char -> Builder
TB.singleton Char
'\n') Int
0
    width :: Int
width = forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
maximum forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (WideBuilder -> Int
wbWidth forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplay -> WideBuilder
adBuilder) [AmountDisplay]
elided

    pad :: AmountDisplay -> AmountDisplay
pad AmountDisplay
amt
      | Just Int
mw <- Maybe Int
mmin =
          let w :: Int
w = (forall a. Ord a => a -> a -> a
max Int
width Int
mw) forall a. Num a => a -> a -> a
- WideBuilder -> Int
wbWidth (AmountDisplay -> WideBuilder
adBuilder AmountDisplay
amt)
           in AmountDisplay
amt{ adBuilder :: WideBuilder
adBuilder = Builder -> Int -> WideBuilder
WideBuilder (CommoditySymbol -> Builder
TB.fromText forall a b. (a -> b) -> a -> b
$ Int -> CommoditySymbol -> CommoditySymbol
T.replicate Int
w CommoditySymbol
" ") Int
w forall a. Semigroup a => a -> a -> a
<> AmountDisplay -> WideBuilder
adBuilder AmountDisplay
amt }
      | Bool
otherwise = AmountDisplay
amt

    elided :: [AmountDisplay]
elided = forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall a. a -> a
id Int -> [AmountDisplay] -> [AmountDisplay]
elideTo Maybe Int
mmax [AmountDisplay]
astrs
    elideTo :: Int -> [AmountDisplay] -> [AmountDisplay]
elideTo Int
m [AmountDisplay]
xs = forall a. Maybe a -> [a] -> [a]
maybeAppend Maybe AmountDisplay
elisionStr [AmountDisplay]
short
      where
        elisionStr :: Maybe AmountDisplay
elisionStr = Maybe Int -> Int -> Int -> AmountDisplay -> Maybe AmountDisplay
elisionDisplay (forall a. a -> Maybe a
Just Int
m) (WideBuilder -> Int
wbWidth WideBuilder
sep) (forall (t :: * -> *) a. Foldable t => t a -> Int
length [AmountDisplay]
long) forall a b. (a -> b) -> a -> b
$ forall a. a -> [a] -> a
lastDef AmountDisplay
nullAmountDisplay [AmountDisplay]
short
        ([AmountDisplay]
short, [AmountDisplay]
long) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition ((Int
mforall a. Ord a => a -> a -> Bool
>=) forall b c a. (b -> c) -> (a -> b) -> a -> c
. WideBuilder -> Int
wbWidth forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplay -> WideBuilder
adBuilder) [AmountDisplay]
xs

-- | Helper for showMixedAmountB to deal with single line displays. This does not
-- honour displayOneLine: all amounts will be displayed as if displayOneLine
-- were True.
showMixedAmountOneLineB :: AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountOneLineB :: AmountDisplayOpts -> MixedAmount -> WideBuilder
showMixedAmountOneLineB opts :: AmountDisplayOpts
opts@AmountDisplayOpts{displayMaxWidth :: AmountDisplayOpts -> Maybe Int
displayMaxWidth=Maybe Int
mmax,displayMinWidth :: AmountDisplayOpts -> Maybe Int
displayMinWidth=Maybe Int
mmin} MixedAmount
ma =
    Builder -> Int -> WideBuilder
WideBuilder (WideBuilder -> Builder
wbBuilder forall b c a. (b -> c) -> (a -> b) -> a -> c
. WideBuilder -> WideBuilder
pad forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Monoid a => [a] -> a
mconcat forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> [a] -> [a]
intersperse WideBuilder
sep forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map AmountDisplay -> WideBuilder
adBuilder [AmountDisplay]
elided)
    forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Ord a => a -> a -> a
max Int
width forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a -> a
fromMaybe Int
0 Maybe Int
mmin
  where
    width :: Int
width  = forall b a. b -> (a -> b) -> Maybe a -> b
maybe Int
0 AmountDisplay -> Int
adTotal forall a b. (a -> b) -> a -> b
$ forall a. [a] -> Maybe a
lastMay [AmountDisplay]
elided
    astrs :: [AmountDisplay]
astrs  = Int -> (Amount -> WideBuilder) -> [Amount] -> [AmountDisplay]
amtDisplayList (WideBuilder -> Int
wbWidth WideBuilder
sep) (AmountDisplayOpts -> Amount -> WideBuilder
showAmountB AmountDisplayOpts
opts) forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmountDisplayOpts -> MixedAmount -> [Amount]
orderedAmounts AmountDisplayOpts
opts forall a b. (a -> b) -> a -> b
$
               if AmountDisplayOpts -> Bool
displayPrice AmountDisplayOpts
opts then MixedAmount
ma else MixedAmount -> MixedAmount
mixedAmountStripPrices MixedAmount
ma
    sep :: WideBuilder
sep    = Builder -> Int -> WideBuilder
WideBuilder ([Char] -> Builder
TB.fromString [Char]
", ") Int
2
    n :: Int
n      = forall (t :: * -> *) a. Foldable t => t a -> Int
length [AmountDisplay]
astrs

    pad :: WideBuilder -> WideBuilder
pad = (Builder -> Int -> WideBuilder
WideBuilder (CommoditySymbol -> Builder
TB.fromText forall a b. (a -> b) -> a -> b
$ Int -> CommoditySymbol -> CommoditySymbol
T.replicate Int
w CommoditySymbol
" ") Int
w forall a. Semigroup a => a -> a -> a
<>)
      where w :: Int
w = forall a. a -> Maybe a -> a
fromMaybe Int
0 Maybe Int
mmin forall a. Num a => a -> a -> a
- Int
width

    elided :: [AmountDisplay]
elided = forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall a. a -> a
id Int -> [AmountDisplay] -> [AmountDisplay]
elideTo Maybe Int
mmax [AmountDisplay]
astrs
    elideTo :: Int -> [AmountDisplay] -> [AmountDisplay]
elideTo Int
m = forall {a}. [(a, Maybe a)] -> [a]
addElide forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int
-> [(AmountDisplay, Maybe AmountDisplay)]
-> [(AmountDisplay, Maybe AmountDisplay)]
takeFitting Int
m forall b c a. (b -> c) -> (a -> b) -> a -> c
. [AmountDisplay] -> [(AmountDisplay, Maybe AmountDisplay)]
withElided
    -- Add the last elision string to the end of the display list
    addElide :: [(a, Maybe a)] -> [a]
addElide [] = []
    addElide [(a, Maybe a)]
xs = forall a. Maybe a -> [a] -> [a]
maybeAppend (forall a b. (a, b) -> b
snd forall a b. (a -> b) -> a -> b
$ forall a. [a] -> a
last [(a, Maybe a)]
xs) forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst [(a, Maybe a)]
xs
    -- Return the elements of the display list which fit within the maximum width
    -- (including their elision strings). Always display at least one amount,
    -- regardless of width.
    takeFitting :: Int
-> [(AmountDisplay, Maybe AmountDisplay)]
-> [(AmountDisplay, Maybe AmountDisplay)]
takeFitting Int
_ []     = []
    takeFitting Int
m ((AmountDisplay, Maybe AmountDisplay)
x:[(AmountDisplay, Maybe AmountDisplay)]
xs) = (AmountDisplay, Maybe AmountDisplay)
x forall a. a -> [a] -> [a]
: forall {t :: * -> *} {a}. Foldable t => (a -> Bool) -> t a -> [a]
dropWhileRev (\(AmountDisplay
a,Maybe AmountDisplay
e) -> Int
m forall a. Ord a => a -> a -> Bool
< AmountDisplay -> Int
adTotal (forall a. a -> Maybe a -> a
fromMaybe AmountDisplay
a Maybe AmountDisplay
e)) [(AmountDisplay, Maybe AmountDisplay)]
xs
    dropWhileRev :: (a -> Bool) -> t a -> [a]
dropWhileRev a -> Bool
p = forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\a
x [a]
xs -> if forall (t :: * -> *) a. Foldable t => t a -> Bool
null [a]
xs Bool -> Bool -> Bool
&& a -> Bool
p a
x then [] else a
xforall a. a -> [a] -> [a]
:[a]
xs) []

    -- Add the elision strings (if any) to each amount
    withElided :: [AmountDisplay] -> [(AmountDisplay, Maybe AmountDisplay)]
withElided = forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\Int
n2 AmountDisplay
amt -> (AmountDisplay
amt, Maybe Int -> Int -> Int -> AmountDisplay -> Maybe AmountDisplay
elisionDisplay forall a. Maybe a
Nothing (WideBuilder -> Int
wbWidth WideBuilder
sep) Int
n2 AmountDisplay
amt)) [Int
nforall a. Num a => a -> a -> a
-Int
1,Int
nforall a. Num a => a -> a -> a
-Int
2..Int
0]

-- Get a mixed amount's component amounts with a bit of cleanup,
-- optionally preserving multiple zeros in different commodities,
-- optionally sorting them according to a commodity display order.
orderedAmounts :: AmountDisplayOpts -> MixedAmount -> [Amount]
orderedAmounts :: AmountDisplayOpts -> MixedAmount -> [Amount]
orderedAmounts AmountDisplayOpts{displayZeroCommodity :: AmountDisplayOpts -> Bool
displayZeroCommodity=Bool
preservezeros, displayOrder :: AmountDisplayOpts -> Maybe [CommoditySymbol]
displayOrder=Maybe [CommoditySymbol]
mcommodityorder} =
  if Bool
preservezeros then MixedAmount -> [Amount]
amountsPreservingZeros else MixedAmount -> [Amount]
amounts
  forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> forall b a. b -> (a -> b) -> Maybe a -> b
maybe forall a. a -> a
id (forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM CommoditySymbol -> [Amount] -> Amount
findfirst) Maybe [CommoditySymbol]
mcommodityorder  -- maybe sort them (somehow..)
  where
    -- Find the first amount with the given commodity, otherwise a null amount in that commodity.
    findfirst :: CommoditySymbol -> [Amount] -> Amount
    findfirst :: CommoditySymbol -> [Amount] -> Amount
findfirst CommoditySymbol
c = forall a. a -> Maybe a -> a
fromMaybe Amount
nullamtc forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
find ((CommoditySymbol
cforall a. Eq a => a -> a -> Bool
==) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Amount -> CommoditySymbol
acommodity)
      where
        nullamtc :: Amount
nullamtc = CommoditySymbol -> Amount -> Amount
amountWithCommodity CommoditySymbol
c Amount
nullamt

data AmountDisplay = AmountDisplay
  { AmountDisplay -> WideBuilder
adBuilder :: !WideBuilder  -- ^ String representation of the Amount
  , AmountDisplay -> Int
adTotal   :: !Int            -- ^ Cumulative length of MixedAmount this Amount is part of,
                                --   including separators
  } deriving (Int -> AmountDisplay -> ShowS
[AmountDisplay] -> ShowS
AmountDisplay -> [Char]
forall a.
(Int -> a -> ShowS) -> (a -> [Char]) -> ([a] -> ShowS) -> Show a
showList :: [AmountDisplay] -> ShowS
$cshowList :: [AmountDisplay] -> ShowS
show :: AmountDisplay -> [Char]
$cshow :: AmountDisplay -> [Char]
showsPrec :: Int -> AmountDisplay -> ShowS
$cshowsPrec :: Int -> AmountDisplay -> ShowS
Show)

nullAmountDisplay :: AmountDisplay
nullAmountDisplay :: AmountDisplay
nullAmountDisplay = WideBuilder -> Int -> AmountDisplay
AmountDisplay forall a. Monoid a => a
mempty Int
0

amtDisplayList :: Int -> (Amount -> WideBuilder) -> [Amount] -> [AmountDisplay]
amtDisplayList :: Int -> (Amount -> WideBuilder) -> [Amount] -> [AmountDisplay]
amtDisplayList Int
sep Amount -> WideBuilder
showamt = forall a b. (a, b) -> b
snd forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) s a b.
Traversable t =>
(s -> a -> (s, b)) -> s -> t a -> (s, t b)
mapAccumL Int -> Amount -> (Int, AmountDisplay)
display (-Int
sep)
  where
    display :: Int -> Amount -> (Int, AmountDisplay)
display Int
tot Amount
amt = (Int
tot', WideBuilder -> Int -> AmountDisplay
AmountDisplay WideBuilder
str Int
tot')
      where
        str :: WideBuilder
str  = Amount -> WideBuilder
showamt Amount
amt
        tot' :: Int
tot' = Int
tot forall a. Num a => a -> a -> a
+ (WideBuilder -> Int
wbWidth WideBuilder
str) forall a. Num a => a -> a -> a
+ Int
sep

-- The string "m more", added to the previous running total
elisionDisplay :: Maybe Int -> Int -> Int -> AmountDisplay -> Maybe AmountDisplay
elisionDisplay :: Maybe Int -> Int -> Int -> AmountDisplay -> Maybe AmountDisplay
elisionDisplay Maybe Int
mmax Int
sep Int
n AmountDisplay
lastAmt
  | Int
n forall a. Ord a => a -> a -> Bool
> Int
0     = forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ WideBuilder -> Int -> AmountDisplay
AmountDisplay (Builder -> Int -> WideBuilder
WideBuilder (CommoditySymbol -> Builder
TB.fromText CommoditySymbol
str) Int
len) (AmountDisplay -> Int
adTotal AmountDisplay
lastAmt forall a. Num a => a -> a -> a
+ Int
len)
  | Bool
otherwise = forall a. Maybe a
Nothing
  where
    fullString :: CommoditySymbol
fullString = [Char] -> CommoditySymbol
T.pack forall a b. (a -> b) -> a -> b
$ forall a. Show a => a -> [Char]
show Int
n forall a. [a] -> [a] -> [a]
++ [Char]
" more.."
    -- sep from the separator, 7 from " more..", numDigits n from number
    fullLength :: Int
fullLength = Int
sep forall a. Num a => a -> a -> a
+ Int
7 forall a. Num a => a -> a -> a
+ forall a. Integral a => Int -> a
numDigitsInt Int
n

    str :: CommoditySymbol
str | Just Int
m <- Maybe Int
mmax, Int
fullLength forall a. Ord a => a -> a -> Bool
> Int
m = Int -> CommoditySymbol -> CommoditySymbol
T.take (Int
m forall a. Num a => a -> a -> a
- Int
2) CommoditySymbol
fullString forall a. Semigroup a => a -> a -> a
<> CommoditySymbol
".."
        | Bool
otherwise                      = CommoditySymbol
fullString
    len :: Int
len = case Maybe Int
mmax of Maybe Int
Nothing -> Int
fullLength
                       Just Int
m  -> forall a. Ord a => a -> a -> a
max Int
2 forall a b. (a -> b) -> a -> b
$ forall a. Ord a => a -> a -> a
min Int
m Int
fullLength

maybeAppend :: Maybe a -> [a] -> [a]
maybeAppend :: forall a. Maybe a -> [a] -> [a]
maybeAppend Maybe a
Nothing  = forall a. a -> a
id
maybeAppend (Just a
a) = (forall a. [a] -> [a] -> [a]
++[a
a])

-- | Set the display precision in the amount's commodities.
mixedAmountSetPrecision :: AmountPrecision -> MixedAmount -> MixedAmount
mixedAmountSetPrecision :: AmountPrecision -> MixedAmount -> MixedAmount
mixedAmountSetPrecision AmountPrecision
p = (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmountUnsafe (AmountPrecision -> Amount -> Amount
amountSetPrecision AmountPrecision
p)

-- | In each component amount, increase the display precision sufficiently
-- to render it exactly (showing all significant decimal digits).
mixedAmountSetFullPrecision :: MixedAmount -> MixedAmount
mixedAmountSetFullPrecision :: MixedAmount -> MixedAmount
mixedAmountSetFullPrecision = (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmountUnsafe Amount -> Amount
amountSetFullPrecision

-- | In each component amount, ensure the display precision is at least the given value.
-- Makes all amounts have an explicit Precision.
mixedAmountSetPrecisionMin :: Word8 -> MixedAmount -> MixedAmount
mixedAmountSetPrecisionMin :: Word8 -> MixedAmount -> MixedAmount
mixedAmountSetPrecisionMin Word8
p = (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmountUnsafe (Word8 -> Amount -> Amount
amountSetPrecisionMin Word8
p)

-- | In each component amount, ensure the display precision is at most the given value.
-- Makes all amounts have an explicit Precision.
mixedAmountSetPrecisionMax :: Word8 -> MixedAmount -> MixedAmount
mixedAmountSetPrecisionMax :: Word8 -> MixedAmount -> MixedAmount
mixedAmountSetPrecisionMax Word8
p = (Amount -> Amount) -> MixedAmount -> MixedAmount
mapMixedAmountUnsafe (Word8 -> Amount -> Amount
amountSetPrecisionMax Word8
p)

-- | Remove all prices from a MixedAmount.
mixedAmountStripPrices :: MixedAmount -> MixedAmount
mixedAmountStripPrices :: MixedAmount -> MixedAmount
mixedAmountStripPrices (Mixed Map MixedAmountKey Amount
ma) =
    forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (\MixedAmount
m Amount
a -> MixedAmount -> Amount -> MixedAmount
maAddAmount MixedAmount
m Amount
a{aprice :: Maybe AmountPrice
aprice=forall a. Maybe a
Nothing}) (Map MixedAmountKey Amount -> MixedAmount
Mixed Map MixedAmountKey Amount
noPrices) Map MixedAmountKey Amount
withPrices
  where (Map MixedAmountKey Amount
noPrices, Map MixedAmountKey Amount
withPrices) = forall a k. (a -> Bool) -> Map k a -> (Map k a, Map k a)
M.partition (forall a. Maybe a -> Bool
isNothing forall b c a. (b -> c) -> (a -> b) -> a -> c
. Amount -> Maybe AmountPrice
aprice) Map MixedAmountKey Amount
ma


-------------------------------------------------------------------------------
-- tests

tests_Amount :: TestTree
tests_Amount = [Char] -> [TestTree] -> TestTree
testGroup [Char]
"Amount" [
   [Char] -> [TestTree] -> TestTree
testGroup [Char]
"Amount" [

     [Char] -> Assertion -> TestTree
testCase [Char]
"amountCost" forall a b. (a -> b) -> a -> b
$ do
       Amount -> Amount
amountCost (Quantity -> Amount
eur Quantity
1) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Quantity -> Amount
eur Quantity
1
       Amount -> Amount
amountCost (Quantity -> Amount
eur Quantity
2){aprice :: Maybe AmountPrice
aprice=forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount -> AmountPrice
UnitPrice forall a b. (a -> b) -> a -> b
$ Quantity -> Amount
usd Quantity
2} forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Quantity -> Amount
usd Quantity
4
       Amount -> Amount
amountCost (Quantity -> Amount
eur Quantity
1){aprice :: Maybe AmountPrice
aprice=forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount -> AmountPrice
TotalPrice forall a b. (a -> b) -> a -> b
$ Quantity -> Amount
usd Quantity
2} forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Quantity -> Amount
usd Quantity
2
       Amount -> Amount
amountCost (Quantity -> Amount
eur (-Quantity
1)){aprice :: Maybe AmountPrice
aprice=forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount -> AmountPrice
TotalPrice forall a b. (a -> b) -> a -> b
$ Quantity -> Amount
usd (-Quantity
2)} forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Quantity -> Amount
usd (-Quantity
2)

    ,[Char] -> Assertion -> TestTree
testCase [Char]
"amountLooksZero" forall a b. (a -> b) -> a -> b
$ do
       HasCallStack => [Char] -> Bool -> Assertion
assertBool [Char]
"" forall a b. (a -> b) -> a -> b
$ Amount -> Bool
amountLooksZero Amount
nullamt
       HasCallStack => [Char] -> Bool -> Assertion
assertBool [Char]
"" forall a b. (a -> b) -> a -> b
$ Amount -> Bool
amountLooksZero forall a b. (a -> b) -> a -> b
$ Quantity -> Amount
usd Quantity
0

    ,[Char] -> Assertion -> TestTree
testCase [Char]
"negating amounts" forall a b. (a -> b) -> a -> b
$ do
       forall a. Num a => a -> a
negate (Quantity -> Amount
usd Quantity
1) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= (Quantity -> Amount
usd Quantity
1){aquantity :: Quantity
aquantity= -Quantity
1}
       let b :: Amount
b = (Quantity -> Amount
usd Quantity
1){aprice :: Maybe AmountPrice
aprice=forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ Amount -> AmountPrice
UnitPrice forall a b. (a -> b) -> a -> b
$ Quantity -> Amount
eur Quantity
2} in forall a. Num a => a -> a
negate Amount
b forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Amount
b{aquantity :: Quantity
aquantity= -Quantity
1}

    ,[Char] -> Assertion -> TestTree
testCase [Char]
"adding amounts without prices" forall a b. (a -> b) -> a -> b
$ do
       (Quantity -> Amount
usd Quantity
1.23 forall a. Num a => a -> a -> a
+ Quantity -> Amount
usd (-Quantity
1.23)) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Quantity -> Amount
usd Quantity
0
       (Quantity -> Amount
usd Quantity
1.23 forall a. Num a => a -> a -> a
+ Quantity -> Amount
usd (-Quantity
1.23)) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Quantity -> Amount
usd Quantity
0
       (Quantity -> Amount
usd (-Quantity
1.23) forall a. Num a => a -> a -> a
+ Quantity -> Amount
usd (-Quantity
1.23)) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Quantity -> Amount
usd (-Quantity
2.46)
       forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Quantity -> Amount
usd Quantity
1.23,Quantity -> Amount
usd (-Quantity
1.23),Quantity -> Amount
usd (-Quantity
1.23),-(Quantity -> Amount
usd (-Quantity
1.23))] forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Quantity -> Amount
usd Quantity
0
       -- highest precision is preserved
       AmountStyle -> AmountPrecision
asprecision (Amount -> AmountStyle
astyle forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Quantity -> Amount
usd Quantity
1 Amount -> AmountPrecision -> Amount
`withPrecision` Word8 -> AmountPrecision
Precision Word8
1, Quantity -> Amount
usd Quantity
1 Amount -> AmountPrecision -> Amount
`withPrecision` Word8 -> AmountPrecision
Precision Word8
3]) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Word8 -> AmountPrecision
Precision Word8
3
       AmountStyle -> AmountPrecision
asprecision (Amount -> AmountStyle
astyle forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [Quantity -> Amount
usd Quantity
1 Amount -> AmountPrecision -> Amount
`withPrecision` Word8 -> AmountPrecision
Precision Word8
3, Quantity -> Amount
usd Quantity
1 Amount -> AmountPrecision -> Amount
`withPrecision` Word8 -> AmountPrecision
Precision Word8
1]) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Word8 -> AmountPrecision
Precision Word8
3
       -- adding different commodities assumes conversion rate 1
       HasCallStack => [Char] -> Bool -> Assertion
assertBool [Char]
"" forall a b. (a -> b) -> a -> b
$ Amount -> Bool
amountLooksZero (Quantity -> Amount
usd Quantity
1.23 forall a. Num a => a -> a -> a
- Quantity -> Amount
eur Quantity
1.23)

    ,[Char] -> Assertion -> TestTree
testCase [Char]
"showAmount" forall a b. (a -> b) -> a -> b
$ do
      Amount -> [Char]
showAmount (Quantity -> Amount
usd Quantity
0 forall a. Num a => a -> a -> a
+ Quantity -> Amount
gbp Quantity
0) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Char]
"0"

  ]

  ,[Char] -> [TestTree] -> TestTree
testGroup [Char]
"MixedAmount" [

     [Char] -> Assertion -> TestTree
testCase [Char]
"comparing mixed amounts compares based on quantities" forall a b. (a -> b) -> a -> b
$ do
       let usdpos :: MixedAmount
usdpos = forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Quantity -> Amount
usd Quantity
1]
           usdneg :: MixedAmount
usdneg = forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Quantity -> Amount
usd (-Quantity
1)]
           eurneg :: MixedAmount
eurneg = forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Quantity -> Amount
eur (-Quantity
12)]
       forall a. Ord a => a -> a -> Ordering
compare MixedAmount
usdneg MixedAmount
usdpos forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Ordering
LT
       forall a. Ord a => a -> a -> Ordering
compare MixedAmount
eurneg MixedAmount
usdpos forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Ordering
LT

     ,[Char] -> Assertion -> TestTree
testCase [Char]
"adding mixed amounts to zero, the commodity and amount style are preserved" forall a b. (a -> b) -> a -> b
$
      forall (t :: * -> *). Foldable t => t MixedAmount -> MixedAmount
maSum (forall a b. (a -> b) -> [a] -> [b]
map Amount -> MixedAmount
mixedAmount
        [Quantity -> Amount
usd Quantity
1.25
        ,Quantity -> Amount
usd (-Quantity
1) Amount -> AmountPrecision -> Amount
`withPrecision` Word8 -> AmountPrecision
Precision Word8
3
        ,Quantity -> Amount
usd (-Quantity
0.25)
        ])
        forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Amount -> MixedAmount
mixedAmount (Quantity -> Amount
usd Quantity
0 Amount -> AmountPrecision -> Amount
`withPrecision` Word8 -> AmountPrecision
Precision Word8
3)

    ,[Char] -> Assertion -> TestTree
testCase [Char]
"adding mixed amounts with total prices" forall a b. (a -> b) -> a -> b
$ do
      forall (t :: * -> *). Foldable t => t MixedAmount -> MixedAmount
maSum (forall a b. (a -> b) -> [a] -> [b]
map Amount -> MixedAmount
mixedAmount
        [Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
@@ Quantity -> Amount
eur Quantity
1
        ,Quantity -> Amount
usd (-Quantity
2) Amount -> Amount -> Amount
@@ Quantity -> Amount
eur Quantity
1
        ])
        forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= Amount -> MixedAmount
mixedAmount (Quantity -> Amount
usd (-Quantity
1) Amount -> Amount -> Amount
@@ Quantity -> Amount
eur Quantity
2)

    ,[Char] -> Assertion -> TestTree
testCase [Char]
"showMixedAmount" forall a b. (a -> b) -> a -> b
$ do
       MixedAmount -> [Char]
showMixedAmount (Amount -> MixedAmount
mixedAmount (Quantity -> Amount
usd Quantity
1)) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Char]
"$1.00"
       MixedAmount -> [Char]
showMixedAmount (Amount -> MixedAmount
mixedAmount (Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
`at` Quantity -> Amount
eur Quantity
2)) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Char]
"$1.00 @ €2.00"
       MixedAmount -> [Char]
showMixedAmount (Amount -> MixedAmount
mixedAmount (Quantity -> Amount
usd Quantity
0)) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Char]
"0"
       MixedAmount -> [Char]
showMixedAmount MixedAmount
nullmixedamt forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Char]
"0"
       MixedAmount -> [Char]
showMixedAmount MixedAmount
missingmixedamt forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Char]
""

    ,[Char] -> Assertion -> TestTree
testCase [Char]
"showMixedAmountWithoutPrice" forall a b. (a -> b) -> a -> b
$ do
      let a :: Amount
a = Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
`at` Quantity -> Amount
eur Quantity
2
      Bool -> MixedAmount -> [Char]
showMixedAmountWithoutPrice Bool
False (Amount -> MixedAmount
mixedAmount (Amount
a)) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Char]
"$1.00"
      Bool -> MixedAmount -> [Char]
showMixedAmountWithoutPrice Bool
False (forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Amount
a, -Amount
a]) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Char]
"0"

    ,[Char] -> [TestTree] -> TestTree
testGroup [Char]
"amounts" [
       [Char] -> Assertion -> TestTree
testCase [Char]
"a missing amount overrides any other amounts" forall a b. (a -> b) -> a -> b
$
        MixedAmount -> [Amount]
amounts (forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Quantity -> Amount
usd Quantity
1, Amount
missingamt]) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Amount
missingamt]
      ,[Char] -> Assertion -> TestTree
testCase [Char]
"unpriced same-commodity amounts are combined" forall a b. (a -> b) -> a -> b
$
        MixedAmount -> [Amount]
amounts (forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Quantity -> Amount
usd Quantity
0, Quantity -> Amount
usd Quantity
2]) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Quantity -> Amount
usd Quantity
2]
      ,[Char] -> Assertion -> TestTree
testCase [Char]
"amounts with same unit price are combined" forall a b. (a -> b) -> a -> b
$
        MixedAmount -> [Amount]
amounts (forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
`at` Quantity -> Amount
eur Quantity
1, Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
`at` Quantity -> Amount
eur Quantity
1]) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Quantity -> Amount
usd Quantity
2 Amount -> Amount -> Amount
`at` Quantity -> Amount
eur Quantity
1]
      ,[Char] -> Assertion -> TestTree
testCase [Char]
"amounts with different unit prices are not combined" forall a b. (a -> b) -> a -> b
$
        MixedAmount -> [Amount]
amounts (forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
`at` Quantity -> Amount
eur Quantity
1, Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
`at` Quantity -> Amount
eur Quantity
2]) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
`at` Quantity -> Amount
eur Quantity
1, Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
`at` Quantity -> Amount
eur Quantity
2]
      ,[Char] -> Assertion -> TestTree
testCase [Char]
"amounts with total prices are combined" forall a b. (a -> b) -> a -> b
$
        MixedAmount -> [Amount]
amounts (forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
@@ Quantity -> Amount
eur Quantity
1, Quantity -> Amount
usd Quantity
1 Amount -> Amount -> Amount
@@ Quantity -> Amount
eur Quantity
1]) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Quantity -> Amount
usd Quantity
2 Amount -> Amount -> Amount
@@ Quantity -> Amount
eur Quantity
2]
    ]

    ,[Char] -> Assertion -> TestTree
testCase [Char]
"mixedAmountStripPrices" forall a b. (a -> b) -> a -> b
$ do
       MixedAmount -> [Amount]
amounts (MixedAmount -> MixedAmount
mixedAmountStripPrices MixedAmount
nullmixedamt) forall a. (Eq a, Show a, HasCallStack) => a -> a -> Assertion
@?= [Amount
nullamt]
       HasCallStack => [Char] -> Bool -> Assertion
assertBool [Char]
"" forall a b. (a -> b) -> a -> b
$ MixedAmount -> Bool
mixedAmountLooksZero forall a b. (a -> b) -> a -> b
$ MixedAmount -> MixedAmount
mixedAmountStripPrices
        (forall (t :: * -> *). Foldable t => t Amount -> MixedAmount
mixed [Quantity -> Amount
usd Quantity
10
               ,Quantity -> Amount
usd Quantity
10 Amount -> Amount -> Amount
@@ Quantity -> Amount
eur Quantity
7
               ,Quantity -> Amount
usd (-Quantity
10)
               ,Quantity -> Amount
usd (-Quantity
10) Amount -> Amount -> Amount
@@ Quantity -> Amount
eur (-Quantity
7)
               ])

  ]

 ]