Numeric.GSL.ODE
 Portability uses ffi Stability provisional Maintainer Alberto Ruiz (aruiz at um dot es)
Description

Solution of ordinary differential equation (ODE) initial value problems.

A simple example:

```import Numeric.GSL
import Numeric.LinearAlgebra
import Graphics.Plot

xdot t [x,v] = [v, -0.95*x - 0.1*v]

ts = linspace 100 (0,20)

sol = odeSolve xdot [10,0] ts

main = mplot (ts : toColumns sol)```
Synopsis
odeSolve :: (Double -> [Double] -> [Double]) -> [Double] -> Vector Double -> Matrix Double
odeSolveV :: ODEMethod -> Double -> Double -> Double -> (Double -> Vector Double -> Vector Double) -> Maybe (Double -> Vector Double -> Matrix Double) -> Vector Double -> Vector Double -> Matrix Double
data ODEMethod
 = RK2 | RK4 | RKf45 | RKck | RK8pd | RK2imp | RK4imp | BSimp | Gear1 | Gear2
Documentation
 odeSolve Source
 :: Double -> [Double] -> [Double] xdot(t,x) -> [Double] initial conditions -> Vector Double desired solution times -> Matrix Double solution A version of odeSolveV with reasonable default parameters and system of equations defined using lists.
 odeSolveV Source
 :: ODEMethod -> Double initial step size -> Double absolute tolerance for the state vector -> Double relative tolerance for the state vector -> Double -> Vector Double -> Vector Double xdot(t,x) -> Maybe (Double -> Vector Double -> Matrix Double) optional jacobian -> Vector Double initial conditions -> Vector Double desired solution times -> Matrix Double solution Evolution of the system with adaptive step-size control.
 data ODEMethod Source
Stepping functions
Constructors
 RK2 Embedded Runge-Kutta (2, 3) method. RK4 4th order (classical) Runge-Kutta. The error estimate is obtained by halving the step-size. For more efficient estimate of the error, use RKf45. RKf45 Embedded Runge-Kutta-Fehlberg (4, 5) method. This method is a good general-purpose integrator. RKck Embedded Runge-Kutta Cash-Karp (4, 5) method. RK8pd Embedded Runge-Kutta Prince-Dormand (8,9) method. RK2imp Implicit 2nd order Runge-Kutta at Gaussian points. RK4imp Implicit 4th order Runge-Kutta at Gaussian points. BSimp Implicit Bulirsch-Stoer method of Bader and Deuflhard. This algorithm requires the Jacobian. Gear1 M=1 implicit Gear method. Gear2 M=2 implicit Gear method.
Instances
 Bounded ODEMethod Enum ODEMethod Eq ODEMethod Show ODEMethod