kalman-1.0.0.2: Kalman and particle filters and smoothers

Copyright(c) 2016 FP Complete Corporation
LicenseMIT (see LICENSE)
Maintainerdominic@steinitz.org
Safe HaskellNone
LanguageHaskell2010

Numeric.Particle

Description

The Theory

The particle filter, runPF, in this library is applicable to the state space model given by

\[ \begin{aligned} \boldsymbol{x}_i &= \boldsymbol{a}_i(\boldsymbol{x}_{i-1}) + \boldsymbol{\psi}_{i-1} \\ \boldsymbol{y}_i &= \boldsymbol{h}_i(\boldsymbol{x}_i) + \boldsymbol{\upsilon}_i \end{aligned} \]

where

  • \(\boldsymbol{a_i}\) is some non-linear vector-valued possibly time-varying state update function.
  • \(\boldsymbol{\psi}_{i}\) are independent normally distributed random variables with mean 0 representing the fact that the state update is noisy: \(\boldsymbol{\psi}_{i} \sim {\cal{N}}(0,Q_i)\).
  • \(\boldsymbol{h}_i\) is some non-linear vector-valued possibly time-varying function describing how we observe the hidden state process.
  • \(\boldsymbol{\upsilon}_i\) are independent normally distributed random variables with mean 0 represent the fact that the observations are noisy: \(\boldsymbol{\upsilon}_{i} \sim {\cal{N}}(0,R_i)\).

Clearly this could be generalised further; anyone wishing for such a generalisation is encouraged to contribute to the library.

The smoother, oneSmoothingPath implements Forward filtering / backward smoothing and returns just one path from the particle filter; in most cases, this will need to be run many times to provide good estimates of the past. Note that oneSmoothingPath uses all observation up until the current time. This could be generalised to select only a window of observations up to the current time. Again, contributions to implement this generalisation are welcomed.

An Extended Example

The equation of motion for a pendulum of unit length subject to Gaussian white noise is

\[ \frac{\mathrm{d}^2\alpha}{\mathrm{d}t^2} = -g\sin\alpha + w(t) \]

We can discretize this via the usual Euler method

\[ \begin{bmatrix} x_{1,i} \\ x_{2,i} \end{bmatrix} = \begin{bmatrix} x_{1,i-1} + x_{2,i-1}\Delta t \\ x_{2,i-1} - g\sin x_{1,i-1}\Delta t \end{bmatrix} + \mathbf{q}_{i-1} \]

where \(q_i \sim {\mathcal{N}}(0,Q)\) and

\[ Q = \begin{bmatrix} \frac{q^c \Delta t^3}{3} & \frac{q^c \Delta t^2}{2} \\ \frac{q^c \Delta t^2}{2} & {q^c \Delta t} \end{bmatrix} \]

Assume that we can only measure the horizontal position of the pendulum and further that this measurement is subject to error so that

\[ y_i = \sin x_i + r_i \]

where \(r_i \sim {\mathcal{N}}(0,R)\).

First let's set the time step and the acceleration caused by earth's gravity and the covariance matrices for the state and observation.

{-# LANGUAGE DataKinds #-}

import Numeric.Particle

deltaT, g :: Double
deltaT = 0.01
g      = 9.81

bigQ :: Sym 2
bigQ = sym $ matrix bigQl

qc :: Double
qc = 0.01

bigQl :: [Double]
bigQl = [ qc * deltaT^3 / 3, qc * deltaT^2 / 2,
          qc * deltaT^2 / 2,       qc * deltaT
        ]

bigR :: Sym 1
bigR  = sym $ matrix [0.2]

data SystemState a = SystemState { x1  :: a, x2  :: a }
  deriving Show

newtype SystemObs a = SystemObs { y1  :: a }
  deriving Show

We use the data generated using code made available with Simo Särkkä's book which starts with an angle of 1.5 radians and an angular velocity of 0.0 radians per second. We set our prior to have a mean of 1.6, not too far from the actual value.

{-# LANGUAGE DataKinds #-}

m0 :: PendulumState
m0 = vector [1.6, 0]

bigP :: Sym 2
bigP = sym $ diag 0.1

initParticles :: R.MonadRandom m =>
                 m (Particles (SystemState Double))
initParticles = V.replicateM nParticles $ do
  r <- R.sample $ R.rvar (Normal m0 bigP)
  let x1 = fst $ headTail r
      x2 = fst $ headTail $ snd $ headTail r
  return $ SystemState { x1 = x1, x2 = x2}

nObs :: Int
nObs = 200

nParticles :: Int
nParticles = 20

(.+), (.*), (.-) :: (Num a) => V.Vector a -> V.Vector a -> V.Vector a
(.+) = V.zipWith (+)
(.*) = V.zipWith (*)
(.-) = V.zipWith (-)

stateUpdateP :: Particles (SystemState Double) ->
                Particles (SystemState Double)
stateUpdateP xPrevs = V.zipWith SystemState x1s x2s
  where
    ix = V.length xPrevs

    x1Prevs = V.map x1 xPrevs
    x2Prevs = V.map x2 xPrevs

    deltaTs = V.replicate ix deltaT
    gs = V.replicate ix g
    x1s = x1Prevs .+ (x2Prevs .* deltaTs)
    x2s = x2Prevs .- (gs .* (V.map sin x1Prevs) .* deltaTs)

Code for Plotting

The full code for plotting the results:

{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE TypeOperators  #-}
{-# LANGUAGE DataKinds      #-}

import qualified Graphics.Rendering.Chart as C
import Graphics.Rendering.Chart.Backend.Diagrams
import Data.Colour
import Data.Colour.Names
import Data.Default.Class
import Control.Lens

import Data.Csv
import System.IO hiding ( hGetContents )
import Data.ByteString.Lazy ( hGetContents )
import qualified Data.Vector as V

import           Data.Random.Distribution.Static.MultivariateNormal ( Normal(..) )
import qualified Data.Random as R
import           Data.Random.Source.PureMT ( pureMT )
import           Control.Monad.State ( evalState, replicateM )

import Data.List ( transpose )

import GHC.TypeLits ( KnownNat )

import Numeric.LinearAlgebra.Static

chartEstimated :: String ->
              [(Double, Double)] ->
              [(Double, Double)] ->
              [(Double, Double)] ->
              C.Renderable ()
chartEstimated title acts obs ests = C.toRenderable layout
  where

    actuals = C.plot_lines_values .~ [acts]
            $ C.plot_lines_style  . C.line_color .~ opaque red
            $ C.plot_lines_title .~ "Actual Trajectory"
            $ C.plot_lines_style  . C.line_width .~ 1.0
            $ def

    measurements = C.plot_points_values .~ obs
                 $ C.plot_points_style  . C.point_color .~ opaque blue
                 $ C.plot_points_title .~ "Measurements"
                 $ def

    estimas = C.plot_lines_values .~ [ests]
            $ C.plot_lines_style  . C.line_color .~ opaque black
            $ C.plot_lines_title .~ "Inferred Trajectory"
            $ C.plot_lines_style  . C.line_width .~ 1.0
            $ def

    layout = C.layout_title .~ title
           $ C.layout_plots .~ [C.toPlot actuals, C.toPlot measurements, C.toPlot estimas]
           $ C.layout_y_axis . C.laxis_title .~ "Angle / Horizontal Displacement"
           $ C.layout_y_axis . C.laxis_override .~ C.axisGridHide
           $ C.layout_x_axis . C.laxis_title .~ "Time"
           $ C.layout_x_axis . C.laxis_override .~ C.axisGridHide
           $ def

stateUpdateNoisy :: R.MonadRandom m =>
                    Sym 2 ->
                    Particles (SystemState Double) ->
                    m (Particles (SystemState Double))
stateUpdateNoisy bigQ xPrevs = do
  let xs = stateUpdateP xPrevs

      x1s = V.map x1 xs
      x2s = V.map x2 xs

  let ix = V.length xPrevs
  etas <- replicateM ix $ R.sample $ R.rvar (Normal 0.0 bigQ)

  let eta1s, eta2s :: V.Vector Double
      eta1s = V.fromList $ map (fst . headTail) etas
      eta2s = V.fromList $ map (fst . headTail . snd . headTail) etas

  return (V.zipWith SystemState (x1s .+ eta1s) (x2s .+ eta2s))

obsUpdate :: Particles (SystemState Double) ->
             Particles (SystemObs Double)
obsUpdate xs = V.map (SystemObs . sin . x1) xs

weight :: forall a n . KnownNat n =>
          (a -> R n) ->
          Sym n ->
          a -> a -> Double
weight f bigR obs obsNew = R.pdf (Normal (f obsNew) bigR) (f obs)

runFilter :: Particles (SystemObs Double) -> V.Vector (Particles (SystemState Double))
runFilter pendulumSamples = evalState action (pureMT 19)
  where
    action = do
      xs <- initParticles
      scanMapM
        (runPF (stateUpdateNoisy bigQ) obsUpdate (weight f bigR))
        return
        xs
        pendulumSamples

testSmoothing :: Particles (SystemObs Double) -> Int -> [Double]
testSmoothing ss n = V.toList $ evalState action (pureMT 23)
  where
    action = do
      xss <- V.replicateM n $ oneSmoothingPath (stateUpdateNoisy bigQ) (weight h bigQ) nParticles (runFilter ss)
      let yss = V.fromList $ map V.fromList $
                transpose $
                V.toList $ V.map (V.toList) $
                xss
      return $ V.map (/ (fromIntegral n)) $ V.map V.sum $ V.map (V.map x1) yss

type PendulumState = R 2

f :: SystemObs Double -> R 1
f = vector . pure . y1

h :: SystemState Double -> R 2
h u = vector [x1 u , x2 u]

diagV = do
  h <- openFile "data/matlabRNGs.csv" ReadMode
  cs <- hGetContents h
  let df = (decode NoHeader cs) :: Either String (V.Vector (Double, Double))
  case df of
    Left _ -> error "Whatever"
    Right generatedSamples -> do
      let preObs = V.take nObs $ V.map fst generatedSamples
      let obs = V.toList preObs
      let acts = V.toList $ V.take nObs $ V.map snd generatedSamples
      let nus = take nObs (testSmoothing (V.map SystemObs preObs) 50)
      denv <- defaultEnv C.vectorAlignmentFns 600 500
      let charte = chartEstimated "Particle Smoother"
                                  (zip [0,1..] acts)
                                  (zip [0,1..] obs)
                                  (zip [0,1..] nus)
      return $ fst $ runBackend denv (C.render charte (600, 500))

Documentation

runPF Source #

Arguments

:: MonadRandom m 
=> (Particles a -> m (Particles a))

System evolution at a point \(\boldsymbol{a}_i(\boldsymbol{x})\)

-> (Particles a -> Particles b)

Measurement operator at a point \(\boldsymbol{h}_i\)

-> (b -> b -> Double)

Observation probability density function \(p(\boldsymbol{y}_k|\boldsymbol{x}^{(i)}_k)\)

-> Particles a

Current estimate \(\big\{\big(w^{(i)}_k, \boldsymbol{x}^{(i)}_k\big) : i \in \{1,\ldots,N\}\big\}\) where \(N\) is the number of particles

-> b

New measurement \(\boldsymbol{y}_i\)

-> m (Particles a)

New estimate \(\big\{\big(w^{(i)}_{k+1}, \boldsymbol{x}^{(i)}_{k+1}\big) : i \in \{1,\ldots,N\}\big\}\) where \(N\) is the number of particles

oneSmoothingPath Source #

Arguments

:: MonadRandom m 
=> (Particles a -> m (Particles a))

System evolution at a point \(\boldsymbol{a}_i(\boldsymbol{x})\)

-> (a -> a -> Double)

State probability density function \(p(\boldsymbol{x}^{(i)}_k|\boldsymbol{x}^{(i)}_{k-1})\)

-> Int

Number of particles \(N\)

-> Vector (Particles a)

Filtering estimates \(\bigg\{\big\{\big(w^{(i)}_{k+1}, \boldsymbol{x}^{(i)}_{k+1}\big) : i \in \{1,\ldots,N\}\big\} : k \in \{1,\ldots,T\}\bigg\}\) where \(T\) is the number of timesteps

-> m (Path a)

A path for the smoothed particle \(\{\boldsymbol{x}_k : k \in T\}\) where \(T\) is the number of timesteps

type Particles a Source #

Arguments

 = Vector a

As an aid for the reader

type Path a Source #

Arguments

 = Vector a

As an aid for the reader