lens-4.11: Lenses, Folds and Traversals

Control.Lens.Tuple

Contents

Description

Synopsis

# Tuples

class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where Source

Minimal complete definition

Nothing

Methods

_1 :: Lens s t a b Source

Access the 1st field of a tuple (and possibly change its type).

````>>> ````(1,2)^._1
```1
```
````>>> ````_1 .~ "hello" \$ (1,2)
```("hello",2)
```
````>>> ````(1,2) & _1 .~ "hello"
```("hello",2)
```
````>>> ````_1 putStrLn ("hello","world")
```hello
((),"world")
```

This can also be used on larger tuples as well:

````>>> ````(1,2,3,4,5) & _1 +~ 41
```(42,2,3,4,5)
```
````_1` :: `Lens` (a,b) (a',b) a a'
`_1` :: `Lens` (a,b,c) (a',b,c) a a'
`_1` :: `Lens` (a,b,c,d) (a',b,c,d) a a'
...
`_1` :: `Lens` (a,b,c,d,e,f,g,h,i) (a',b,c,d,e,f,g,h,i) a a'
```

Instances

 Field1 (Identity a) (Identity b) a b Field1 (a, b) (a', b) a a' ````_1` k ~(a,b) = (\a' -> (a',b)) `<\$>` k a ``` Field1 (a, b, c) (a', b, c) a a' Field1 ((:*:) f g p) ((:*:) f' g p) (f p) (f' p) Field1 (Product f g a) (Product f' g a) (f a) (f' a) Field1 (a, b, c, d) (a', b, c, d) a a' Field1 (a, b, c, d, e) (a', b, c, d, e) a a' Field1 (a, b, c, d, e, f) (a', b, c, d, e, f) a a' Field1 (a, b, c, d, e, f, g) (a', b, c, d, e, f, g) a a' Field1 (a, b, c, d, e, f, g, h) (a', b, c, d, e, f, g, h) a a' Field1 (a, b, c, d, e, f, g, h, i) (a', b, c, d, e, f, g, h, i) a a'

class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where Source

Minimal complete definition

Nothing

Methods

_2 :: Lens s t a b Source

Access the 2nd field of a tuple.

````>>> ````_2 .~ "hello" \$ (1,(),3,4)
```(1,"hello",3,4)
```
````>>> ````(1,2,3,4) & _2 *~ 3
```(1,6,3,4)
```
````>>> ````_2 print (1,2)
```2
(1,())
```
````anyOf` `_2` :: (s -> `Bool`) -> (a, s) -> `Bool`
`traverse` `.` `_2` :: (`Applicative` f, `Traversable` t) => (a -> f b) -> t (s, a) -> f (t (s, b))
`foldMapOf` (`traverse` `.` `_2`) :: (`Traversable` t, `Monoid` m) => (s -> m) -> t (b, s) -> m
```

Instances

 Field2 (a, b) (a, b') b b' ````_2` k ~(a,b) = (\b' -> (a,b')) `<\$>` k b ``` Field2 (a, b, c) (a, b', c) b b' Field2 ((:*:) f g p) ((:*:) f g' p) (g p) (g' p) Field2 (Product f g a) (Product f g' a) (g a) (g' a) Field2 (a, b, c, d) (a, b', c, d) b b' Field2 (a, b, c, d, e) (a, b', c, d, e) b b' Field2 (a, b, c, d, e, f) (a, b', c, d, e, f) b b' Field2 (a, b, c, d, e, f, g) (a, b', c, d, e, f, g) b b' Field2 (a, b, c, d, e, f, g, h) (a, b', c, d, e, f, g, h) b b' Field2 (a, b, c, d, e, f, g, h, i) (a, b', c, d, e, f, g, h, i) b b'

class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where Source

Minimal complete definition

Nothing

Methods

_3 :: Lens s t a b Source

Access the 3rd field of a tuple.

Instances

 Field3 (a, b, c) (a, b, c') c c' Field3 (a, b, c, d) (a, b, c', d) c c' Field3 (a, b, c, d, e) (a, b, c', d, e) c c' Field3 (a, b, c, d, e, f) (a, b, c', d, e, f) c c' Field3 (a, b, c, d, e, f, g) (a, b, c', d, e, f, g) c c' Field3 (a, b, c, d, e, f, g, h) (a, b, c', d, e, f, g, h) c c' Field3 (a, b, c, d, e, f, g, h, i) (a, b, c', d, e, f, g, h, i) c c'

class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where Source

Minimal complete definition

Nothing

Methods

_4 :: Lens s t a b Source

Access the 4th field of a tuple.

Instances

 Field4 (a, b, c, d) (a, b, c, d') d d' Field4 (a, b, c, d, e) (a, b, c, d', e) d d' Field4 (a, b, c, d, e, f) (a, b, c, d', e, f) d d' Field4 (a, b, c, d, e, f, g) (a, b, c, d', e, f, g) d d' Field4 (a, b, c, d, e, f, g, h) (a, b, c, d', e, f, g, h) d d' Field4 (a, b, c, d, e, f, g, h, i) (a, b, c, d', e, f, g, h, i) d d'

class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where Source

Minimal complete definition

Nothing

Methods

_5 :: Lens s t a b Source

Access the 5th field of a tuple.

Instances

 Field5 (a, b, c, d, e) (a, b, c, d, e') e e' Field5 (a, b, c, d, e, f) (a, b, c, d, e', f) e e' Field5 (a, b, c, d, e, f, g) (a, b, c, d, e', f, g) e e' Field5 (a, b, c, d, e, f, g, h) (a, b, c, d, e', f, g, h) e e' Field5 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e', f, g, h, i) e e'

class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where Source

Minimal complete definition

Nothing

Methods

_6 :: Lens s t a b Source

Access the 6th field of a tuple.

Instances

 Field6 (a, b, c, d, e, f) (a, b, c, d, e, f') f f' Field6 (a, b, c, d, e, f, g) (a, b, c, d, e, f', g) f f' Field6 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f', g, h) f f' Field6 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f', g, h, i) f f'

class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where Source

Minimal complete definition

Nothing

Methods

_7 :: Lens s t a b Source

Access the 7th field of a tuple.

Instances

 Field7 (a, b, c, d, e, f, g) (a, b, c, d, e, f, g') g g' Field7 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g', h) g g' Field7 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g', h, i) g g'

class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where Source

Minimal complete definition

Nothing

Methods

_8 :: Lens s t a b Source

Access the 8th field of a tuple.

Instances

 Field8 (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h') h h' Field8 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h', i) h h'

class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where Source

Minimal complete definition

Nothing

Methods

_9 :: Lens s t a b Source

Access the 9th field of a tuple.

Instances

 Field9 (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h, i') i i'

# Strict variations

_1' :: Field1 s t a b => Lens s t a b Source

Strict version of `_1`

_2' :: Field2 s t a b => Lens s t a b Source

Strict version of `_2`

_3' :: Field3 s t a b => Lens s t a b Source

Strict version of `_3`

_4' :: Field4 s t a b => Lens s t a b Source

Strict version of `_4`

_5' :: Field5 s t a b => Lens s t a b Source

Strict version of `_5`

_6' :: Field6 s t a b => Lens s t a b Source

Strict version of `_6`

_7' :: Field7 s t a b => Lens s t a b Source

Strict version of `_7`

_8' :: Field8 s t a b => Lens s t a b Source

Strict version of `_8`

_9' :: Field9 s t a b => Lens s t a b Source

Strict version of `_9`