linear-1.20.3: Linear Algebra

Copyright(C) 2012-2015 Edward Kmett
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellTrustworthy
LanguageHaskell98

Linear.V4

Description

4-D Vectors

Synopsis

Documentation

data V4 a Source

A 4-dimensional vector.

Constructors

V4 !a !a !a !a 

Instances

Monad V4 Source 

Methods

(>>=) :: V4 a -> (a -> V4 b) -> V4 b

(>>) :: V4 a -> V4 b -> V4 b

return :: a -> V4 a

fail :: String -> V4 a

Functor V4 Source 

Methods

fmap :: (a -> b) -> V4 a -> V4 b

(<$) :: a -> V4 b -> V4 a

MonadFix V4 Source 

Methods

mfix :: (a -> V4 a) -> V4 a

Applicative V4 Source 

Methods

pure :: a -> V4 a

(<*>) :: V4 (a -> b) -> V4 a -> V4 b

(*>) :: V4 a -> V4 b -> V4 b

(<*) :: V4 a -> V4 b -> V4 a

Foldable V4 Source 

Methods

fold :: Monoid m => V4 m -> m

foldMap :: Monoid m => (a -> m) -> V4 a -> m

foldr :: (a -> b -> b) -> b -> V4 a -> b

foldr' :: (a -> b -> b) -> b -> V4 a -> b

foldl :: (b -> a -> b) -> b -> V4 a -> b

foldl' :: (b -> a -> b) -> b -> V4 a -> b

foldr1 :: (a -> a -> a) -> V4 a -> a

foldl1 :: (a -> a -> a) -> V4 a -> a

toList :: V4 a -> [a]

null :: V4 a -> Bool

length :: V4 a -> Int

elem :: Eq a => a -> V4 a -> Bool

maximum :: Ord a => V4 a -> a

minimum :: Ord a => V4 a -> a

sum :: Num a => V4 a -> a

product :: Num a => V4 a -> a

Traversable V4 Source 

Methods

traverse :: Applicative f => (a -> f b) -> V4 a -> f (V4 b)

sequenceA :: Applicative f => V4 (f a) -> f (V4 a)

mapM :: Monad m => (a -> m b) -> V4 a -> m (V4 b)

sequence :: Monad m => V4 (m a) -> m (V4 a)

Generic1 V4 Source 

Associated Types

type Rep1 (V4 :: * -> *) :: * -> *

Methods

from1 :: V4 a -> Rep1 V4 a

to1 :: Rep1 V4 a -> V4 a

Distributive V4 Source 

Methods

distribute :: Functor f => f (V4 a) -> V4 (f a)

collect :: Functor f => (a -> V4 b) -> f a -> V4 (f b)

distributeM :: Monad m => m (V4 a) -> V4 (m a)

collectM :: Monad m => (a -> V4 b) -> m a -> V4 (m b)

Representable V4 Source 

Associated Types

type Rep (V4 :: * -> *) :: *

Methods

tabulate :: (Rep V4 -> a) -> V4 a

index :: V4 a -> Rep V4 -> a

MonadZip V4 Source 

Methods

mzip :: V4 a -> V4 b -> V4 (a, b)

mzipWith :: (a -> b -> c) -> V4 a -> V4 b -> V4 c

munzip :: V4 (a, b) -> (V4 a, V4 b)

Serial1 V4 Source 

Methods

serializeWith :: MonadPut m => (a -> m ()) -> V4 a -> m ()

deserializeWith :: MonadGet m => m a -> m (V4 a)

Traversable1 V4 Source 

Methods

traverse1 :: Apply f => (a -> f b) -> V4 a -> f (V4 b)

sequence1 :: Apply f => V4 (f b) -> f (V4 b)

Apply V4 Source 

Methods

(<.>) :: V4 (a -> b) -> V4 a -> V4 b

(.>) :: V4 a -> V4 b -> V4 b

(<.) :: V4 a -> V4 b -> V4 a

Bind V4 Source 

Methods

(>>-) :: V4 a -> (a -> V4 b) -> V4 b

join :: V4 (V4 a) -> V4 a

Foldable1 V4 Source 

Methods

fold1 :: Semigroup m => V4 m -> m

foldMap1 :: Semigroup m => (a -> m) -> V4 a -> m

Eq1 V4 Source 

Methods

eq1 :: Eq a => V4 a -> V4 a -> Bool

Ord1 V4 Source 

Methods

compare1 :: Ord a => V4 a -> V4 a -> Ordering

Read1 V4 Source 

Methods

readsPrec1 :: Read a => Int -> ReadS (V4 a)

Show1 V4 Source 

Methods

showsPrec1 :: Show a => Int -> V4 a -> ShowS

Additive V4 Source 

Methods

zero :: Num a => V4 a Source

(^+^) :: Num a => V4 a -> V4 a -> V4 a Source

(^-^) :: Num a => V4 a -> V4 a -> V4 a Source

lerp :: Num a => a -> V4 a -> V4 a -> V4 a Source

liftU2 :: (a -> a -> a) -> V4 a -> V4 a -> V4 a Source

liftI2 :: (a -> b -> c) -> V4 a -> V4 b -> V4 c Source

Metric V4 Source 

Methods

dot :: Num a => V4 a -> V4 a -> a Source

quadrance :: Num a => V4 a -> a Source

qd :: Num a => V4 a -> V4 a -> a Source

distance :: Floating a => V4 a -> V4 a -> a Source

norm :: Floating a => V4 a -> a Source

signorm :: Floating a => V4 a -> V4 a Source

R1 V4 Source 

Methods

_x :: Functor f => (a -> f a) -> V4 a -> f (V4 a) Source

R2 V4 Source 

Methods

_y :: Functor f => (a -> f a) -> V4 a -> f (V4 a) Source

_xy :: Functor f => (V2 a -> f (V2 a)) -> V4 a -> f (V4 a) Source

R3 V4 Source 

Methods

_z :: Functor f => (a -> f a) -> V4 a -> f (V4 a) Source

_xyz :: Functor f => (V3 a -> f (V3 a)) -> V4 a -> f (V4 a) Source

R4 V4 Source 

Methods

_w :: Functor f => (a -> f a) -> V4 a -> f (V4 a) Source

_xyzw :: Functor f => (V4 a -> f (V4 a)) -> V4 a -> f (V4 a) Source

Trace V4 Source 

Methods

trace :: Num a => V4 (V4 a) -> a Source

diagonal :: V4 (V4 a) -> V4 a Source

Affine V4 Source 

Associated Types

type Diff (V4 :: * -> *) :: * -> * Source

Methods

(.-.) :: Num a => V4 a -> V4 a -> Diff V4 a Source

(.+^) :: Num a => V4 a -> Diff V4 a -> V4 a Source

(.-^) :: Num a => V4 a -> Diff V4 a -> V4 a Source

Unbox a => Vector Vector (V4 a) Source 

Methods

basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) (V4 a) -> m (Vector (V4 a))

basicUnsafeThaw :: PrimMonad m => Vector (V4 a) -> m (Mutable Vector (PrimState m) (V4 a))

basicLength :: Vector (V4 a) -> Int

basicUnsafeSlice :: Int -> Int -> Vector (V4 a) -> Vector (V4 a)

basicUnsafeIndexM :: Monad m => Vector (V4 a) -> Int -> m (V4 a)

basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) (V4 a) -> Vector (V4 a) -> m ()

elemseq :: Vector (V4 a) -> V4 a -> b -> b

Unbox a => MVector MVector (V4 a) Source 

Methods

basicLength :: MVector s (V4 a) -> Int

basicUnsafeSlice :: Int -> Int -> MVector s (V4 a) -> MVector s (V4 a)

basicOverlaps :: MVector s (V4 a) -> MVector s (V4 a) -> Bool

basicUnsafeNew :: PrimMonad m => Int -> m (MVector (PrimState m) (V4 a))

basicInitialize :: PrimMonad m => MVector (PrimState m) (V4 a) -> m ()

basicUnsafeReplicate :: PrimMonad m => Int -> V4 a -> m (MVector (PrimState m) (V4 a))

basicUnsafeRead :: PrimMonad m => MVector (PrimState m) (V4 a) -> Int -> m (V4 a)

basicUnsafeWrite :: PrimMonad m => MVector (PrimState m) (V4 a) -> Int -> V4 a -> m ()

basicClear :: PrimMonad m => MVector (PrimState m) (V4 a) -> m ()

basicSet :: PrimMonad m => MVector (PrimState m) (V4 a) -> V4 a -> m ()

basicUnsafeCopy :: PrimMonad m => MVector (PrimState m) (V4 a) -> MVector (PrimState m) (V4 a) -> m ()

basicUnsafeMove :: PrimMonad m => MVector (PrimState m) (V4 a) -> MVector (PrimState m) (V4 a) -> m ()

basicUnsafeGrow :: PrimMonad m => MVector (PrimState m) (V4 a) -> Int -> m (MVector (PrimState m) (V4 a))

Num r => Coalgebra r (E V4) Source 

Methods

comult :: (E V4 -> r) -> E V4 -> E V4 -> r Source

counital :: (E V4 -> r) -> r Source

Bounded a => Bounded (V4 a) Source 

Methods

minBound :: V4 a

maxBound :: V4 a

Eq a => Eq (V4 a) Source 

Methods

(==) :: V4 a -> V4 a -> Bool

(/=) :: V4 a -> V4 a -> Bool

Floating a => Floating (V4 a) Source 

Methods

pi :: V4 a

exp :: V4 a -> V4 a

log :: V4 a -> V4 a

sqrt :: V4 a -> V4 a

(**) :: V4 a -> V4 a -> V4 a

logBase :: V4 a -> V4 a -> V4 a

sin :: V4 a -> V4 a

cos :: V4 a -> V4 a

tan :: V4 a -> V4 a

asin :: V4 a -> V4 a

acos :: V4 a -> V4 a

atan :: V4 a -> V4 a

sinh :: V4 a -> V4 a

cosh :: V4 a -> V4 a

tanh :: V4 a -> V4 a

asinh :: V4 a -> V4 a

acosh :: V4 a -> V4 a

atanh :: V4 a -> V4 a

Fractional a => Fractional (V4 a) Source 

Methods

(/) :: V4 a -> V4 a -> V4 a

recip :: V4 a -> V4 a

fromRational :: Rational -> V4 a

Data a => Data (V4 a) Source 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V4 a -> c (V4 a)

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V4 a)

toConstr :: V4 a -> Constr

dataTypeOf :: V4 a -> DataType

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (V4 a))

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V4 a))

gmapT :: (forall b. Data b => b -> b) -> V4 a -> V4 a

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V4 a -> r

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V4 a -> r

gmapQ :: (forall d. Data d => d -> u) -> V4 a -> [u]

gmapQi :: Int -> (forall d. Data d => d -> u) -> V4 a -> u

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V4 a -> m (V4 a)

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V4 a -> m (V4 a)

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V4 a -> m (V4 a)

Num a => Num (V4 a) Source 

Methods

(+) :: V4 a -> V4 a -> V4 a

(-) :: V4 a -> V4 a -> V4 a

(*) :: V4 a -> V4 a -> V4 a

negate :: V4 a -> V4 a

abs :: V4 a -> V4 a

signum :: V4 a -> V4 a

fromInteger :: Integer -> V4 a

Ord a => Ord (V4 a) Source 

Methods

compare :: V4 a -> V4 a -> Ordering

(<) :: V4 a -> V4 a -> Bool

(<=) :: V4 a -> V4 a -> Bool

(>) :: V4 a -> V4 a -> Bool

(>=) :: V4 a -> V4 a -> Bool

max :: V4 a -> V4 a -> V4 a

min :: V4 a -> V4 a -> V4 a

Read a => Read (V4 a) Source 
Show a => Show (V4 a) Source 

Methods

showsPrec :: Int -> V4 a -> ShowS

show :: V4 a -> String

showList :: [V4 a] -> ShowS

Ix a => Ix (V4 a) Source 

Methods

range :: (V4 a, V4 a) -> [V4 a]

index :: (V4 a, V4 a) -> V4 a -> Int

unsafeIndex :: (V4 a, V4 a) -> V4 a -> Int

inRange :: (V4 a, V4 a) -> V4 a -> Bool

rangeSize :: (V4 a, V4 a) -> Int

unsafeRangeSize :: (V4 a, V4 a) -> Int

Generic (V4 a) Source 

Associated Types

type Rep (V4 a) :: * -> *

Methods

from :: V4 a -> Rep (V4 a) x

to :: Rep (V4 a) x -> V4 a

Storable a => Storable (V4 a) Source 

Methods

sizeOf :: V4 a -> Int

alignment :: V4 a -> Int

peekElemOff :: Ptr (V4 a) -> Int -> IO (V4 a)

pokeElemOff :: Ptr (V4 a) -> Int -> V4 a -> IO ()

peekByteOff :: Ptr b -> Int -> IO (V4 a)

pokeByteOff :: Ptr b -> Int -> V4 a -> IO ()

peek :: Ptr (V4 a) -> IO (V4 a)

poke :: Ptr (V4 a) -> V4 a -> IO ()

Binary a => Binary (V4 a) Source 

Methods

put :: V4 a -> Put

get :: Get (V4 a)

Serial a => Serial (V4 a) Source 

Methods

serialize :: MonadPut m => V4 a -> m ()

deserialize :: MonadGet m => m (V4 a)

Serialize a => Serialize (V4 a) Source 

Methods

put :: Putter (V4 a)

get :: Get (V4 a)

NFData a => NFData (V4 a) Source 

Methods

rnf :: V4 a -> ()

Hashable a => Hashable (V4 a) Source 

Methods

hashWithSalt :: Int -> V4 a -> Int

hash :: V4 a -> Int

Unbox a => Unbox (V4 a) Source 
Ixed (V4 a) Source 

Methods

ix :: Index (V4 a) -> Traversal' (V4 a) (IxValue (V4 a))

Epsilon a => Epsilon (V4 a) Source 

Methods

nearZero :: V4 a -> Bool Source

FunctorWithIndex (E V4) V4 Source 

Methods

imap :: (E V4 -> a -> b) -> V4 a -> V4 b

imapped :: (Indexable (E V4) p, Settable f) => p a (f b) -> V4 a -> f (V4 b)

FoldableWithIndex (E V4) V4 Source 

Methods

ifoldMap :: Monoid m => (E V4 -> a -> m) -> V4 a -> m

ifolded :: (Indexable (E V4) p, Contravariant f, Applicative f) => p a (f a) -> V4 a -> f (V4 a)

ifoldr :: (E V4 -> a -> b -> b) -> b -> V4 a -> b

ifoldl :: (E V4 -> b -> a -> b) -> b -> V4 a -> b

ifoldr' :: (E V4 -> a -> b -> b) -> b -> V4 a -> b

ifoldl' :: (E V4 -> b -> a -> b) -> b -> V4 a -> b

TraversableWithIndex (E V4) V4 Source 

Methods

itraverse :: Applicative f => (E V4 -> a -> f b) -> V4 a -> f (V4 b)

itraversed :: (Indexable (E V4) p, Applicative f) => p a (f b) -> V4 a -> f (V4 b)

Each (V4 a) (V4 b) a b Source 

Methods

each :: Traversal (V4 a) (V4 b) a b

type Rep1 V4 Source 
type Rep V4 = E V4 Source 
type Diff V4 = V4 Source 
data MVector s (V4 a) = MV_V4 !Int !(MVector s a) Source 
type Rep (V4 a) Source 
data Vector (V4 a) = V_V4 !Int !(Vector a) Source 
type Index (V4 a) = E V4 Source 
type IxValue (V4 a) = a Source 

vector :: Num a => V3 a -> V4 a Source

Convert a 3-dimensional affine vector into a 4-dimensional homogeneous vector.

point :: Num a => V3 a -> V4 a Source

Convert a 3-dimensional affine point into a 4-dimensional homogeneous vector.

normalizePoint :: Fractional a => V4 a -> V3 a Source

Convert 4-dimensional projective coordinates to a 3-dimensional point. This operation may be denoted, euclidean [x:y:z:w] = (x/w, y/w, z/w) where the projective, homogenous, coordinate [x:y:z:w] is one of many associated with a single point (x/w, y/w, z/w).

class R1 t where Source

A space that has at least 1 basis vector _x.

Minimal complete definition

Nothing

Methods

_x :: Lens' (t a) a Source

>>> V1 2 ^._x
2
>>> V1 2 & _x .~ 3
V1 3

Instances

R1 Identity Source 

Methods

_x :: Functor f => (a -> f a) -> Identity a -> f (Identity a) Source

R1 V1 Source 

Methods

_x :: Functor f => (a -> f a) -> V1 a -> f (V1 a) Source

R1 V2 Source 

Methods

_x :: Functor f => (a -> f a) -> V2 a -> f (V2 a) Source

R1 V3 Source 

Methods

_x :: Functor f => (a -> f a) -> V3 a -> f (V3 a) Source

R1 V4 Source 

Methods

_x :: Functor f => (a -> f a) -> V4 a -> f (V4 a) Source

R1 f => R1 (Point f) Source 

Methods

_x :: Functor b => (a -> b a) -> Point f a -> b (Point f a) Source

class R1 t => R2 t where Source

A space that distinguishes 2 orthogonal basis vectors _x and _y, but may have more.

Minimal complete definition

Nothing

Methods

_y :: Lens' (t a) a Source

>>> V2 1 2 ^._y
2
>>> V2 1 2 & _y .~ 3
V2 1 3

_xy :: Lens' (t a) (V2 a) Source

Instances

R2 V2 Source 

Methods

_y :: Functor f => (a -> f a) -> V2 a -> f (V2 a) Source

_xy :: Functor f => (V2 a -> f (V2 a)) -> V2 a -> f (V2 a) Source

R2 V3 Source 

Methods

_y :: Functor f => (a -> f a) -> V3 a -> f (V3 a) Source

_xy :: Functor f => (V2 a -> f (V2 a)) -> V3 a -> f (V3 a) Source

R2 V4 Source 

Methods

_y :: Functor f => (a -> f a) -> V4 a -> f (V4 a) Source

_xy :: Functor f => (V2 a -> f (V2 a)) -> V4 a -> f (V4 a) Source

R2 f => R2 (Point f) Source 

Methods

_y :: Functor b => (a -> b a) -> Point f a -> b (Point f a) Source

_xy :: Functor b => (V2 a -> b (V2 a)) -> Point f a -> b (Point f a) Source

_yx :: R2 t => Lens' (t a) (V2 a) Source

>>> V2 1 2 ^. _yx
V2 2 1

class R2 t => R3 t where Source

A space that distinguishes 3 orthogonal basis vectors: _x, _y, and _z. (It may have more)

Minimal complete definition

Nothing

Methods

_z :: Lens' (t a) a Source

>>> V3 1 2 3 ^. _z
3

_xyz :: Lens' (t a) (V3 a) Source

Instances

R3 V3 Source 

Methods

_z :: Functor f => (a -> f a) -> V3 a -> f (V3 a) Source

_xyz :: Functor f => (V3 a -> f (V3 a)) -> V3 a -> f (V3 a) Source

R3 V4 Source 

Methods

_z :: Functor f => (a -> f a) -> V4 a -> f (V4 a) Source

_xyz :: Functor f => (V3 a -> f (V3 a)) -> V4 a -> f (V4 a) Source

R3 f => R3 (Point f) Source 

Methods

_z :: Functor b => (a -> b a) -> Point f a -> b (Point f a) Source

_xyz :: Functor b => (V3 a -> b (V3 a)) -> Point f a -> b (Point f a) Source

_xz :: R3 t => Lens' (t a) (V2 a) Source

_yz :: R3 t => Lens' (t a) (V2 a) Source

_zx :: R3 t => Lens' (t a) (V2 a) Source

_zy :: R3 t => Lens' (t a) (V2 a) Source

_xzy :: R3 t => Lens' (t a) (V3 a) Source

_yxz :: R3 t => Lens' (t a) (V3 a) Source

_yzx :: R3 t => Lens' (t a) (V3 a) Source

_zxy :: R3 t => Lens' (t a) (V3 a) Source

_zyx :: R3 t => Lens' (t a) (V3 a) Source

class R3 t => R4 t where Source

A space that distinguishes orthogonal basis vectors _x, _y, _z, _w. (It may have more.)

Minimal complete definition

Nothing

Methods

_w :: Lens' (t a) a Source

>>> V4 1 2 3 4 ^._w
4

_xyzw :: Lens' (t a) (V4 a) Source

Instances

R4 V4 Source 

Methods

_w :: Functor f => (a -> f a) -> V4 a -> f (V4 a) Source

_xyzw :: Functor f => (V4 a -> f (V4 a)) -> V4 a -> f (V4 a) Source

R4 f => R4 (Point f) Source 

Methods

_w :: Functor b => (a -> b a) -> Point f a -> b (Point f a) Source

_xyzw :: Functor b => (V4 a -> b (V4 a)) -> Point f a -> b (Point f a) Source

_xw :: R4 t => Lens' (t a) (V2 a) Source

_yw :: R4 t => Lens' (t a) (V2 a) Source

_zw :: R4 t => Lens' (t a) (V2 a) Source

_wx :: R4 t => Lens' (t a) (V2 a) Source

_wy :: R4 t => Lens' (t a) (V2 a) Source

_wz :: R4 t => Lens' (t a) (V2 a) Source

_xyw :: R4 t => Lens' (t a) (V3 a) Source

_xzw :: R4 t => Lens' (t a) (V3 a) Source

_xwy :: R4 t => Lens' (t a) (V3 a) Source

_xwz :: R4 t => Lens' (t a) (V3 a) Source

_yxw :: R4 t => Lens' (t a) (V3 a) Source

_yzw :: R4 t => Lens' (t a) (V3 a) Source

_ywx :: R4 t => Lens' (t a) (V3 a) Source

_ywz :: R4 t => Lens' (t a) (V3 a) Source

_zxw :: R4 t => Lens' (t a) (V3 a) Source

_zyw :: R4 t => Lens' (t a) (V3 a) Source

_zwx :: R4 t => Lens' (t a) (V3 a) Source

_zwy :: R4 t => Lens' (t a) (V3 a) Source

_wxy :: R4 t => Lens' (t a) (V3 a) Source

_wxz :: R4 t => Lens' (t a) (V3 a) Source

_wyx :: R4 t => Lens' (t a) (V3 a) Source

_wyz :: R4 t => Lens' (t a) (V3 a) Source

_wzx :: R4 t => Lens' (t a) (V3 a) Source

_wzy :: R4 t => Lens' (t a) (V3 a) Source

_xywz :: R4 t => Lens' (t a) (V4 a) Source

_xzyw :: R4 t => Lens' (t a) (V4 a) Source

_xzwy :: R4 t => Lens' (t a) (V4 a) Source

_xwyz :: R4 t => Lens' (t a) (V4 a) Source

_xwzy :: R4 t => Lens' (t a) (V4 a) Source

_yxzw :: R4 t => Lens' (t a) (V4 a) Source

_yxwz :: R4 t => Lens' (t a) (V4 a) Source

_yzxw :: R4 t => Lens' (t a) (V4 a) Source

_yzwx :: R4 t => Lens' (t a) (V4 a) Source

_ywxz :: R4 t => Lens' (t a) (V4 a) Source

_ywzx :: R4 t => Lens' (t a) (V4 a) Source

_zxyw :: R4 t => Lens' (t a) (V4 a) Source

_zxwy :: R4 t => Lens' (t a) (V4 a) Source

_zyxw :: R4 t => Lens' (t a) (V4 a) Source

_zywx :: R4 t => Lens' (t a) (V4 a) Source

_zwxy :: R4 t => Lens' (t a) (V4 a) Source

_zwyx :: R4 t => Lens' (t a) (V4 a) Source

_wxyz :: R4 t => Lens' (t a) (V4 a) Source

_wxzy :: R4 t => Lens' (t a) (V4 a) Source

_wyxz :: R4 t => Lens' (t a) (V4 a) Source

_wyzx :: R4 t => Lens' (t a) (V4 a) Source

_wzxy :: R4 t => Lens' (t a) (V4 a) Source

_wzyx :: R4 t => Lens' (t a) (V4 a) Source

ex :: R1 t => E t Source

ey :: R2 t => E t Source

ez :: R3 t => E t Source

ew :: R4 t => E t Source